Object Oriented Programming[210243]
SE Computer Engineering

UNIT-I
Fundamentals of Object Oriented Programming

Unit Contents

Introduction to object-oriented programming, Need of object-oriented
programming, Fundamentals of object-oriented programming:
Namespaces, objects, classes, data members, methods, messages,
data encapsulation, data abstraction and information hiding,
inheritance, polymorphism. Benefits of OOP, C++ as object oriented
programming language.

C++ Programming- C++ programming Basics, Data Types, Structures,
Enumerations, control structures, Arrays and Strings, Class, Object,
class and data abstraction, Access specifiers, separating interface from
implementation.

Functions- Function, function prototype, accessing function and utility
function, Constructors and destructor, Types of constructor, Objects
and Memory requirements, Static members: variable and functions,
inline function, friend function.

Introduction to OOP paradigm

* Object-oriented programming (OOP) is a
programming paradigm based on the concept
of "objects"”, which can contain data, in the
form of fields (often known as attributes or
properties), and code, in the form of
procedures (often known as methods or
functions).

Introduction to Procedure-Oriented
Programming

Emphasis iIs on doing things (algorithms).

Large programs are divided into smaller programs
known as functions.

Most of the functions share global data.

Data move openly around the system from
function to function.

Functions transform data from one form to
another.

Employs top-down approach in program design.

Procedure-Oriented Programming

Global data Global data
SN /

Function 1 Function 2 Function 1

Local data Local data Local data

Relationship of data and functions in POP

Limitations of Procedural
Programming

The program code is harder to write

The Procedural code is often not reusable, which
may pose the need to recreate the code if is
needed to use in another application

Difficult to relate with real-world objects

The importance is given to the operation rather
than the data, which might pose issues in some
data-sensitive cases

The data is exposed to the whole program,
making it not so much security friendly

Object-Oriented Programming Benefits

* OOP mimics the real world, making it easier to
understand

* OOP codes are reusable in other programs

* Security is offered due to the use of data
hiding and abstraction mechanism

* Due to modularity and encapsulation, OOP
offers ease of management

OOP Paradigms

Object A Object B

| Data | | Data |

m — m

Object C

Functions

Organization of Data and Functions in OOP

Fundamentals of object oriented
Programming

Namespaces:

* A namespace is a declarative region that provides
a scope to the identifiers (the names of types,
functions, variables, etc) inside it.

* Namespaces are used to organize code into
logical groups and to prevent name collisions that
can occur especially when your code base
includes multiple libraries.

* eg. using namespace std;

Here std is the namespace where ANSI C++
standard class libraries are defined.

Fundamentals of object oriented
Programming

* Defining namespace
syntax-

Nnamespace namespace_name

{

// code declarations

}

Fundamentals of object oriented
Programming

#include <iostream> int main ()
using namespace std; {
// first name space

_ // Calls function from first name space.
namespace first_space

first_space::func();

{
void func() {
cout << "Inside first_space" << endl; // Calls function from second name space.
} B ' second_space::func();
}
// second name space return O;
namespace second_space }
{
void func() {
cout << "Inside second_space" << endl;
}

}

Fundamentals of object oriented
Programming

Objects:

Objects are the basic run time entities in an
object-oriented system.

When a program is executed, the objects
interact by sending messages to one another.

Objects take up space in the memory.

We can create ‘n” number of objects belonging
to particular class

Object Example

class example

5

int main()

{

example obj; //object of class example

J

Fundamentals of object oriented
Programming

Classes:

* A class in C++ is the building block, that leads
to Object-Oriented programming.

* |t is a user-defined data type, which holds its
own data members and member functions,
which can be accessed and used by creating
an instance of that class.

A C++ class is like a blueprint for an object.

Fundamentals of object oriented
Programming

Classes:

keyword user-defined name

class ClassName
{ Access specifier: //can be private,public or protected

Data members; // Variables to be used

Member Functions() {} //Methods to access data members

// Class name ends with a semicolon

Fundamentals of object oriented
Programming

Data Members:

e Data members include members that are
declared with any of the fundamental types,
as well as other types, including pointer,
reference, array types, bit fields, and user-
defined types.

Fundamentals of object oriented
Programming

« Data Members:

#include<iostream>
using namespace std;
class student

d
private :
ML s | Data Members
char name[20]:
public :
Void Getdata(void);
Void display (void) Member

{ .
cout << id <<‘\t’ << name << endl: Functions
)
1.
|)
int main()

J
l N

Fundamentals of object oriented
Programming

Methods:

 Methods are functions that belongs to the
class.

 There are two ways to define functions that

belongs to a class:
— Inside class definition.
— Qutside class definition.

Inside class definition

class example

{
public:
void add() //method defined inside class
{
}
I
Int main()
{
example obj;
obj.add();
return O;

Outside class definition

class example

{
public:
void add() //method declared inside class

5

void example::add() //method defined outside class

{

}

Int main()

example obj;
obj.add();
return O;

Fundamentals of object oriented
Programming

Messages:

* Objects communicate with one another by
sending and receiving information to each other.

A message for an object is a request for execution
of a procedure and therefore will invoke a
function in the receiving object that generates
the desired results.

e.g. employee.salary(name)

(object) (Message) (information)

Fundamentals of object oriented
Programming

Data Encapsulation:

* Encapsulation is an Object Oriented
Programming concept that binds together
the data and functions that manipulate
the data, and that keeps both safe from
outside interference and misuse.

Fundamentals of object oriented
Programming

 Data Abstraction refers to providing only
essential information to the outside world
and hiding their background details, i.e., to
represent the needed information in program
without presenting the details.

* Data hiding is an object-oriented
programming technique of hiding internal
object details i.e. data members.

Fundamentals of object oriented
Programming

DATA HIDING ABSTRACTION

E R EEEEESEEEEEEEEEEEDN EEEEEEEEEENEEEEEEEEEDN
Process that ensures An OOP concept that hides
exclusive data access to the implementation details
class members and provides and shows only the
object integrity by functionality to the user
preventing unintended or
intended changes

Focuses on protecting Focuses on hiding the
data complexity of the system

Helps to secure the data Helps to hide the
implementation details and

display only the
functionalities to the user

Fundamentals of object oriented
Programming

* Inheritance is a process in which one object
acquires all the properties and behaviors of its
parent object automatically.

* |n C++, the class which inherits the members
of another class is called derived class and the
class whose members are inherited is called
base class.

Types Of Inheritance

Multiple

Single

T
—

/ \

Hybrid

MultiLevel Hierarchieal

Fundamentals of object oriented

Programming
* Inheritance Example // Derived class
class Car: public Vehicle
{
// Base class public:
class Vehicle string model = “Altroz";
{ 7
public: int main()
string brand = “Tata"; {
void honk() Car myCar;
{ myCar.honk();
cout << "Tuut, tuut! \n" ; cout << myCar.brand +" " + myCar.model;
} return O;
5 }

Fundamentals of object oriented
Programming

Polymorphism:
 The word polymorphism means having many forms.

* |n simple words, we can define polymorphism as the
ability of a message to be displayed in more than one
form.

e A person at the same time can have different
characteristics. Like a man at the same time is a father,
a husband, an employee. So the same person posses
different behavior in different situations. This is called
polymorphism.

* |t takes place when there is a hierarchy of classes and
they are related by inheritance.

Fundamentals of object oriented
Programming

Types of Polymorphism

Method Operator Virtual
Overriding Overloading Functions

Fundamentals of object oriented

Programming:

class Shape {
protected:
int width, height;

public:

Shape(inta =0, int b =0){
width = a;
height = b;

}

int area() {
cout << "Parent class area :" <<endl;
return O;

}
|5

Polymorphism

class Rectangle: public Shape {
public:
Rectangle(inta =0, int b = 0):Shape(a, b) { }

intarea () {
return (width * height);

}
%

class Triangle: public Shape {
public:
Triangle(inta =0, int b = 0):Shape(a, b) { }

int area () {
return (width * height/ 2);
}
9

Benefits of OOP

Modularity for easier troubleshooting
Reuse of code

Flexibility through polymorphism
Effective problem solving

Security

Code maintenance

C++ As OOP Language

e C++ is called object oriented programming (OOP)
language because C++ language views a problem in
terms of objects involved rather than the procedure
for doing it.

 Object oriented programming is always good for
writing large business logics and large applications or
games.

* OOPs is also very much desired for maintenance and
long term support.

C++ Program structure

HeaderFile Declaration Section

Global Declaration Section

Class Declaration
and
Method Definition Section

Main Function

Method Definition Section

C++ Programming Basics

using namespace std;
Class Example

{ //Class declaration, if any along with its member variables and functions
};
//qglobal variables, if any
int main() //This is where the execution of program begins
{
//code
return O;

C++ Data Types

Data Types

User Defines Fundamantal Built -
Data types in data types

Derived
Data types

Structure, | l)
T = ~7s Floating Array, Function,
M Union, Class, Void oating . 5
3 Poi Pointer, Reference
Enumeration oint
|

-

More about Built-in Data Types

float

+/-3.4e +/- 38 (~7 digits)

Type Size (in bytes) | Range
char 1 -127to 127 or O to 255
unsigned char 1 0 to 255
int 4 -2147483648 to 2147483647
unsigned int 4 0 to 4294967295
short int 2 -32768 to 32767
unsigned short int | 2 0 to 65,535
long int 4 -2147483648 to 2147483647
unsigned long int | 4 0 to 4294967295

4

8

double

+/-1.7e +/- 308 (~15 digits)

Derived Type

These data types are derived from fundamental data
types.

Variables of derived data type allows us to store multiple
values of same type in one variable but never allows to
store multiple values of different types.

e.g. Array of integer values
int string[10];

Function

Pointer

Reference

User-defined data types

e Structure - defines a new data type, with more
than one member variable

e.g.
struct Books
{
char title[50];
char author[50];

char subject[100];
int book_id;

Union

Union - user-defined type that uses same block of
memory for each of its list member

e.g.
union student

{

int roll_no;
int phone_number;

float percentage;

5

Structure Vs Union

Structure

struct Geeksforgeeks
{

char X;

floatV;
} obj;

geekl ' geek2: I

! / obj (structure object)

Unions

union Geeksforgeeks

{
char X;

floatV;
} obj;

\

geekl & geek2 |

obj (union object)

dallocates storage
- ~ - < - - . g \"' 1Irooct 7'-,' 3
viemory sharing equal to largest one

Example of Union

#include<iostream>
#include<cstring>
using namespace std;

union student
i Output;
int roll_no;
int phone_number;

\ roll no:1234567822

int main() phone_number:1234567822
{

union student p1;
pl.roll_no=12;

pl.phone_number=1234567822;

cout<<"roll_no:"<<pl.roll_no<<endl;
cout<<"phone_number:"<<pl.phone_number<<endl;

return O;

User-defined data types

* Class - defines a new data type, with more than
one member variables and member functions.

e.g.
class Books

{
char title[50];

char author[50];

public:
void get_book();
void show_book();

Enumerations

* Enumerations are used to define symbolic constants.

e.g.
enum direction {East, West, North, South};
int main()
{
direction dir = North;
cout<<dir<<end|;
cout<<East;
return O;
}
Output: 2

0

Enumerations

int main()

{
// Defining enum Gender
enum Gender { Male, Female };

// Creating Gender type variable
Gender gender = Male;
switch (gender)

{
case Male: cout << "Gender is Male"; break;
case Female: cout << "Gender is Female"; break;
default: cout << "Value can be Male or Female";
return O;

Control Structures

C++ has only three kinds of control structures, which we refer to as
control statements:

Sequence statement
“sequence is a series of statements that executes one after another”
Selection statements
— |If
— if...elseand
— switch
repetition statements
— While
— for and
— do... while

Control structures

Sequence Control Structure Selection Control Structure

Do-While Control Structure

v
v
&7
-

Arrays and Strings

* Arrays - An array in C++ is a collection of items stored
at contiguous memory locations and elements can
be accessed randomly using indices of an array.

22 47 12 21 33 60

0 1 2 3 4 5
Arrays Indices

Array Length : 6
First Index: O
Last Index: 5

Strings

Strings represent sequences of characters

#include <iostream>
using namespace std;
int main ()
{
char greeting[6] = {'H', 'e", 'I','I', '0", '\0'};
cout << "Greeting message: ";
cout << greeting << end|;
return O;

}

Output- Greeting message: Hello

Class

* Class - It is a user-defined data type, which holds its own
data members and member functions, which can be
accessed and used by creating an instance of that class.

class Books
{
char title[50];
char author[50];
public:
void get_book();
void show book();

Object

 Everything in C++ is associated with classes
and objects, along with its attributes and methods.

 For example: in real life, a car is an object. The car
has attributes, such as weight and color, and
methods, such as drive and brake.

Class & Object

//Elass Box \\\
{

private:

// data members ‘<k:j (:liiSSES

public:

// member functions

}s j

[Box" le {Boxw sz {Box" b3}<}: Objects

Data Abstraction

core
functionality

Object

implementaion
details

Interface
exposed to
user

X 2 Abstraction means
SS— displaying only
essential information

and hiding the
details.

Class & Data Abstraction

#include <iostream.h>
using namespace std;
class AbstractionExample
{
private:

int num;

char ch;
public:
void setMyValues(int n, char c)
{

num = n;

ch =¢;

void getMyValues()
{

cout<<"Numbersis: "<<num<< endl;
cout<<"Charis: "<<ch<<endl;

}

I

int main()

{
AbstractionExample obj;
obj.setMyValues(100, 'X’);
obj.getMyValues();
return O;

}

Advantages of Abstraction

 The programmer need not write low-level code.

* |t protects the internal implementation from
malicious use and errors.

* The Programmer can change the internal details of
the class implementation without the knowledge of

end-user thereby without affecting the outer layer
operations.

Accessing Class Members

* The data members and member functions
of class can be accessed using the dot('. ') operator
with the object.

Accessing Class Members

class MyClass

{
public: // Access specifier
int myNum; // Attribute (int variable)
string myString; // Attribute (string variable)
7
int main()
{
MyClass myObj; // Object of MyClass

// Access attributes and set values
myObj.myNum = 15;
myObj.myString = "Some text";

return O;

public

class PublicAccess

{
public:

int x;

void display();
}

Access Specifiers

class PrivateAccess

{

private

private:

display();

}

protected

class ProtectedAccess

{
protected:

int x;

void display();
}

Access Specifiers

protected

class

private
data

Accessible to
Outside world

Accessible to
derived classes

Not accessible
outside

Separating Interface from
Implementation

Class declaration is the abstract definition of
interface.

The functions include the details of the
implementation.

It is possible to separate interface from the
implementation by placing them in separate files.

The class declaration goes in a header file with a
.h extension whereas implementation goes in the
.cpp file which must include the user defined
header file.

Interface Vs Implementation

e Interface - the declaration of the class

e Implementation - the definition of the
member functions

e interface and implementation are typically
separated into different files (also
separate from main driver file)

e For Rectangle Class
- Interface - Rectangle.h
- Implementation - Rectangle.cpp

Functions

e A function is a block of code which only runs when it
is called.

* You can pass data, known as parameters, into a
function.

* Functions are used to perform certain actions, and
they are important for reusing code: Define the code
once, and use It many times.

Functions

// function creation

void myFunction()

{
cout << "l just got executed!";

}

int main()

{
myFunction(); // call the function
return O;

}

Output:

"I just got executed!”

Function Prototype

* Function prototype serves the following purposes:

1) It states the return type of the data that the
function will return.

2) It states the number of arguments passed to
the function.

3) It states the data types of the each of the
passed arguments.

4) It states the order in which the arguments
are passed to the function.

Function Prototype

TP

. . This line is called the
returnT functionName(parameter list :
{ ype (p) function header

J/ function statements

®_ return variable or literal of return type

| ®

int add(int a, int b); //Function Prototype

void add(int a, int b) //Function Defination
|

return a+b;

Constructors

A constructor is a special method that is
automatically called when an object of a class
IS created.

To create a constructor, use the same name as
the class, followed by parentheses ().

Constructor doesn’t have a return type.
One can pass parameters to the constructors.

Constructors are of different types: default,
parameterized, copy.

Constructors

class MyClass //Class
o
public:
MyClass() //Constructor
{
cout << "Hello World!";
}
»
int main()
{

MyClass myObj; // object of MyClass will call the constructor
return O;

Destructors

A destructor is a member function that is invoked
automatically when the object goes out of scope or is
explicitly destroyed.

e A destructor has the same name as the class,
preceded by a tilde (~).

* For example, the destructor for class String is
declared: ~String() .

Destructors

class Demo
{
private:
int num1, num2;
public:
Demo(int n1, int n2)
{ int main()
cout<<"Inside Constructor'<<end|; {
numl = nl; Demo obj1(10, 20);
num2 = n2; return O;
} }
~Demo()
{
cout<<"Inside Destructor";
}
2

Types of Constructor

Constructor in C++

Default

|

Class_name()

Parameterized

l

Class_name(parameters)

|

Copy

l

Class_name(const Class_name old_object)

oG
y,

Default Constructor

class MyClass
{
public:
. MyClass() // default Constructor
Default constructor is {
called with no cout << "Hello World!";
arguments. } J
int main()
{
MyClass myObj;
return O;
}

Parameterized Constructor

* It accepts a specific number of parameters. To
initialize data members of a class with distinct values.

 With a parameterized constructor for a class, one
must provide initial values as arguments, otherwise,

the compiler reports an error.

Parameterized Constructor

This constructor is
called with arguments.

class MyClass

{
public:

MyClass(intp) // parameterized Constructor

int main()

{
MyClass myObj(10);
return 0;

Copy Constructor

* Used to create new object as a copy of existing

object.
* A copy constructor has the following general

function prototype:
ClassName (const ClassName &old obj);

Copy Constructor

class Point
{
private:
intx,vy;
public:
Point(int x1, int y1) i{”t main()
{ X = X1 Point p1(10, 15);
=yl; Point p2 = p1; // Copy constructor
} vy return O;
// Copy constructor }
Point(const Point &p)
{
X =p.X;
Yy =p.Y;
}
Iy

Objects & Memory Requirements

* The memory space is allocated to the data members
of a class only when an object of the class is created,
and not when the data members are declared inside
the class.

* Since a single data member can have different values
for different objects at the same time, every object
declared for the class has an individual copy of all the
data members.

Static Members: Variables & Functions

e A static member function can be called even if no
objects of the class exist

e Static functions are accessed using only
the class name and the scope resolution operator ::.

« A static member function can only
access static data member, other static
member functions and any other functions from
outside the class.

class Test

{

private:

Static Members

static int n;

oibls ¥ & Unit

static void show ()

{

cout<<hn

}
};

“<n<<endl:;

int Test::n=10;
void main ()

{

Test: :show();
getch();

}

Output:
n=10

Inline Function

* The inline functions are the C++ enhancement
feature to improve the execution time of a program.

* These functions can instruct the compiler to make
them inline so that compiler can replace
the function calls by the function definitions.

* Function call overhead doesn’t occur.

Inline Function

Normal Function

Inline Functions

/ Main Function Body\

control

Il code fansfer - myfunction()

/I myfunction(); }I body
=

Il code <Flow control

k} / transfer

/ Main Function Body\
{

Il code
/I myfunction();
myfunction()

{
Il body
}

I/l code

\ } 4

Inline Function

inline int cube(int s)

{

return s*s*s;

}

int main()

{

cout << "The cube of 3is: " << cube(3) << "\n";
return O;

}
//Output: The cube of 3is: 27

Friend Function

* A friend function of a class is defined outside
that class' scope but it has the right to access

all private and protected members of
the class.

* Even though the prototypes for friend
functions appear in
the class definition, friends are not
member functions of the class in which they
are declared.

Friend Function

class Temperature

{ int celsius;

public:
Temperature()
{ celsius=0;
}

friend int temp(Temperature);

int temp(Temperaturet)
{ t.celsius=40;
returnt.celsius;

int main()

{

Temperaturetm,;
cout<<temp(tm)<<endl;
return O;

Modular Programming

 Modular programming is the process of subdividing
a computer program into separate sub-programs.

* A module is a separate software component. It can
often be used in a variety of applications and
functions with other components of the system.

Generic Programming

* Generics in C++ is the idea to allow type (Integer,
String, .. etc and user-defined types) to be a
parameter to methods, classes and interfaces.

* Generic Programming enables the programmer to
write a general algorithm which will work with all
data types.

Difference Between Procedure Oriented Programming (POP) & Object

Oriented Programming (OOP) 4M

Procedure Oriented Programming

Object Oriented Programming

Divided Into

In POP, program 1s divided into small
parts called functions.

In OOP, program 1s divided into parts
called objects.

Importance

In POP,Importance 1s not given to data
but to functions as well as sequence of
actions to be done.

In OOP, Importance 1s given to the data
rather than procedures or functions
because 1t works as a real world.

| Approach |POP follows Top Down approach. [0OP follows Bottom Up approach.
Access _ et S ane e OOP has access specifiers named
Specifiers POP does not have any access specifier. Public, Private, Protected. etc.

Data Moving

In POP, Data can move freely from
function to function 1n the system.

In OOP, objects can move and
communicate with each other through
member functions.

Expansion

To add new data and function in POP 15
not s0 casy.

OOP provides an easy way to add new
data and function.

Data Access

In POP, Most function uses Global data
for sharing that can be accessed freely
from function to function in the system.

In OOP, data can not move easily from
function to function,it can be kept public
or private so we can control the access
of data.

Data Hiding

POP does not have any proper way for
hiding data so 1t 1s less secure.

OOP provides Data Hiding so provides
more security.

In OOP, overloading 1s possible in the

FORTREAN, Pascal.

Overloading ||In POP, Overloading is not possible. form of Function Overloading and
Operator Overloading.
_ ||[Example of POP are : C, VB, Example of OOP are : C++, JAVA,
Examples

VB.NET, C#NET.

Story of C++ Invention by Bjarne Stroustrup:
Case Study

Why | Created C++

https://www.youtube.com/watch?v=JBjjnq
GOBP8

The Essence of C++
https://www.youtube.com/watch?v=86xW
Vb4XIyE

