
By Dr. Amol Dhumane

Object Oriented Programming[210243]

SE Computer Engineering

UNIT-II

Inheritance and Pointers

By Dr. Amol Dhumane

Unit Contents

Inheritance- Base Class and derived Class, protected members,
relationship between base Class and derived Class, Constructor
and destructor in Derived Class, Overriding Member Functions,
Class Hierarchies, Public and Private Inheritance, Types of
Inheritance, Ambiguity in Multiple Inheritance, Virtual Base
Class, Abstract class, Friend Class , Nested Class.

Pointers: declaring and initializing pointers, indirection
Operators, Memory Management: new and delete, Pointers to
Objects, this pointer, Pointers Vs Arrays, accessing Arrays using
pointers, Arrays of Pointers, Function pointers, Pointers to
Pointers, Pointers to Derived classes, Passing pointers to
functions, Return pointers from functions, Null pointer, void
pointer.

By Dr. Amol Dhumane

Inheritance

What is Inheritance?

By Dr. Amol Dhumane

Inheritance

By Dr. Amol Dhumane

Basic Syntax

Class BaseClass

{

 //BaseClass properties and functions

};

class DerivedClass : accessSpecifier BaseClass

{

};

Access specifier can be public, protected and private.

The default access specifier is private.

By Dr. Amol Dhumane

 Access Specifiers

•Public - members are accessible from outside the class

•Private - members cannot be accessed (or viewed)
from outside the class

•Protected - members cannot be accessed from
outside the class, however, they can be accessed from
inherited classes.

By Dr. Amol Dhumane

 Access Specifiers

Access Specifier Within same class In derived class Outside the

class

Private Yes No No

Protected Yes Yes No

Public Yes Yes Yes

By Dr. Amol Dhumane

Relationships in OOP

• One of the advantages of an Object-Oriented programming
language is code reuse.

• There are two ways we can do code reuse either by the
implementation of inheritance (IS-A relationship), or object
composition (HAS-A relationship).

• IS- A Relationship : based on Inheritance

• HAS-A Relationship : the use of instance variables that are
references to other objects. HAS-A relationship is composition.

By Dr. Amol Dhumane

Relationships in OOP

By Dr. Amol Dhumane

Types of Inheritance

By Dr. Amol Dhumane

Ambiguity in Multiple Inheritance

class base1

 {

 public:

 void someFunction()

 {

 }

 };

 class base2

{

 public:

 void someFunction()

 {

 }

 };

class derived : public base1, public base2

{

};

int main()

{

 derived obj;

 obj.someFunction() // Error!

 return 0;

 }

By Dr. Amol Dhumane

Ambiguity in Multiple
Inheritance…

•This problem can be solved using scope resolution
operator. e.g.

 int main()

 {

 obj.base1::someFunction(); // Function of base1 class is called
 obj.base2::someFunction(); // Function of base2 class is called

 }

By Dr. Amol Dhumane

Constructor and destructor in
Derived Class

• A derived-class constructor :

- Calls the constructor for its base class first to initialize its
base-class members.

- If the derived-class constructor is omitted, its default
constructor calls the base-class’ default constructor

• A derived-class destructor :

- Destructors are called in the reverse order of constructor
calls :

- So a derived-class destructor is called before its base class
destructor

By Dr. Amol Dhumane

Order of calling Constructors and
Destructors in Inheritance

By Dr. Amol Dhumane

Guess output ??

class parent //parent class
{
 public:
 parent() //constructor
 {
 cout<<"Parent Constructor\n";
 }

 ~parent() //destructor
 {
 cout<<"Parent Destructor\n";
 }
};

class child : public parent //child class

{

 public:

 child() //constructor

 {

 cout<<"Child Constructor\n";

 }

 ~ child() //destructor

 {

 cout<<"Child Destructor\n";

 }

};

int main()

{

 child c;

 return 0;

}

By Dr. Amol Dhumane

Program Output

Parent Constructor
Child Constructor
Child Destructor
Parent Destructor

By Dr. Amol Dhumane

Overriding Member Functions

 Requirements for Overriding a Function :

• Inheritance should be there.

- Function overriding cannot be done within a class. For
this we require a derived class and a base class.

• Function that is redefined must have exactly same signature
in both base and derived class, that means same name,
same return type and same list of parameters.

By Dr. Amol Dhumane

Overriding Member Functions

• Derived class object will invoke
the derived class function.

• How to access the overridden
function of the base class??

By Dr. Amol Dhumane

First Solution

Invoke the base class
function using base class
name and scope resolution
operator.

class base

{

 public:

 void getdata()

 {

 cout<<"base..";

 }

};

class derived:public base

{

 public:

 void getdata()

 {

 cout<<"derived..";

 }

};

int main()

{

 derived obj;

 obj.base::getdata();

 obj. getdata();

 return 0;

}

By Dr. Amol Dhumane

Second Solution

Invoke the base class
function from the derived
class function using base
class name and scope
resolution operator.

By Dr. Amol Dhumane

Public, Private and Protected
Inheritance

By Dr. Amol Dhumane

Virtual Base Class

•When two or more objects are derived from a
common base class, we can prevent multiple copies
of the base class being present in an object derived
from those objects by declaring the base class as
virtual when it is being inherited.

•Such a base class is known as virtual base class. This
can be achieved by preceding the base class’ name
with the word virtual.

By Dr. Amol Dhumane

Virtual Base Class

•The virtual base class is used when a derived class
has multiple copies of the base class.

 class B {

 public: int b;

};

class D1 : public B {

 public: int d1;

};

class D2 : public B {

 public: int d2;

};

class D3 : public D1, public D2 {

 public: int d3;

};

int main() {

 D3 obj;

 obj.b = 40; /*error will occur as multiple

copies of variable b are present in class D3*/

}

By Dr. Amol Dhumane

Virtual Base Class

• The virtual base class is used when a derived class has
multiple copies of the base class.

 class B

{

 public: int b;

};

class D1 : virtual public B

{

 public: int d1;

};

class D2 : virtual public B

{

 public: int d2;

};

class D3 : public D1, public D2

{

 public: int d3;

};

int main()

{

 D3 obj;

 obj.b = 40; //No error

}

By Dr. Amol Dhumane

Friend Class

By Dr. Amol Dhumane

Friend Class

•A friend class is a class that can access the private
and protected members of a class in which it is
declared as friend.

 Syntax :

 friend class class_name;

By Dr. Amol Dhumane

Friend Class Program

class A

{

 private:

 int a;

 public:

 A() { a = 0; }

 friend class B;

};

class B

{

 private:

 int b;

 public:

 void showA (A& x)

 { // Since B is friend of A, it can access

 // private members of A

 cout << "A::a=" << x.a;

 }

};

int main()

{

 A a; B b;

 b.showA(a);

 return 0;

}

By Dr. Amol Dhumane

Nested Class

•A nested class is a class which is declared in another
enclosing class.

e.g.

 class Outer

 {

 class Inner

 {

 };

 };

By Dr. Amol Dhumane

Nested Class

class A

{

 public:

 class B

 {

 private:

 int num;

 public:

 void getdata(int n)

 {

 num = n;

 }

 };

};

int main()

{

 cout<<"Nested classes in C++";

 A :: B obj;

 obj.getdata(9);

 return 0;

}

By Dr. Amol Dhumane

Pointers

•Normal variable is used to store the value.

•A pointer is a variable that holds the address of
another variable.

•Pointers are symbolic representations of addresses.

•We can have pointer to any variable type.

Syntax of Pointer :

 data_type *pointer_name;

By Dr. Amol Dhumane

Pointers

By Dr. Amol Dhumane

Pointer Declaration

int *ip; // pointer to an integer

double *dp; // pointer to a double

 float *fp; // pointer to a float

char *ch; // pointer to character

By Dr. Amol Dhumane

Reference operator (&) and
Deference operator (*)

• Reference operator (&)
gives the address of a
variable.

• To get the value stored in
the memory address, we
use the dereference
operator (*) which is also
called as indirection
operator.

 e.g. If a number variable is
stored in the memory
address 0x123, and it
contains a value 5.

• The reference (&) operator
gives the value 0x123, while
the dereference
(*) operator gives the
value 5.

By Dr. Amol Dhumane

Reference operator (&) and
Deference operator (*)

By Dr. Amol Dhumane

Pointer Program

int main ()

 {

int var = 20;

int *ip; // pointer variable

ip = &var; // store address of var in pointer

cout << "Value of var variable: "var << endl;

cout << "Address stored in ip variable: “<<ip;

cout << "Value of *ip variable: "<< *ip << endl;

return 0;

 }

Output :

Value of var variable: 20

Address stored in ip
variable: 0xbfc601ac

Value of *ip variable: 20

By Dr. Amol Dhumane

Memory Management

•Two operators new and delete that perform the
task of allocating and freeing the memory in a
better and easier way.

By Dr. Amol Dhumane

The new operator

• syntax of new operator:

 pointer_variable = new datatype;

• syntax to initialize the memory :

 pointer_variable = new datatype(value);

• syntax to allocate a block of memory,

 pointer_variable = new datatype[size];

By Dr. Amol Dhumane

The delete operator

• syntax of delete operator :

 delete pointer_variable;

• syntax to delete the block of allocated memory:

 delete[] pointer_variable;

By Dr. Amol Dhumane

Program of new and delete
operator

int main ()

{

 int *ptr1 = NULL;

 ptr1 = new int;

 *ptr1 = 28;

 float *ptr2 = new float(299.121);

 int *ptr3 = new int[5];

 cout << "Value of pointer var1 : " << *ptr1;

 cout << "Value of pointer var2 : " << *ptr2;

 if (!ptr3)

 {

 cout << "Allocation of memory failed\n";

 }

else

{

 for (int i = 0; i < 5; i++)

 ptr3[i] = i+1;

 cout << "Value stored in block of memory:";

 for (int i = 0; i < 5; i++)

 cout << ptr3[i] << " ";

 }

 delete ptr1; delete ptr2; delete[] ptr3;

 return 0;

 }

Output

Value of pointer var1 : 28

Value of pointer var2 : 299.121

Value stored in block of memory: 1 2 3 4 5

By Dr. Amol Dhumane

Pointers to Objects

• Just like other pointers, pointers to objects are
declared by placing * in front of an object pointer’s
name.

•Syntax:

 Class_name ∗object_pointer ;

By Dr. Amol Dhumane

Pointers to Objects

class myclass

{
 int i;

 public:

 void read(int j)

 {
 i= j;
 }

 int getint()
 {
 return i;
 }

};

void main()

{

 myclass ob, *objectPointer;

 //initialize pointer

 objectPointer = &ob;

 objectPointer->read(10);

 cout<<objectPointer->getint();

}

Output:

10

By Dr. Amol Dhumane

this pointer

• It holds the address of current object, in simple
words you can say that it points to the current
object of the class.

• It can be used to pass current object as a parameter
to another method.

• It can be used to refer current class instance
variable.

By Dr. Amol Dhumane

this pointer

class Demo

{

private:

 int num;

 char ch;

public:

 void setValues(int num, char ch)

 {

 this->num =num;

 this->ch=ch;

 }

 void displayValues()

 {

 cout<<num<<endl;

 cout<<ch;

 }

};

int main()

{

 Demo obj;

 obj.setValues(100, 'A’);
 obj.displayValues();

 return 0;

}

Output :

 100

 A

By Dr. Amol Dhumane

Pointers Vs Arrays

Declaration

//In C++

type var_name[size];

Stores the value of the variable of

homogeneous data type.

An array of pointers can be

generated.

An array can store the number of

elements, mentioned in the size of

array variable.

Used to allocate fixed sized

memory.

Declaration

//In C++

type * var_name;

Store the address of the another

variable of same datatype.

A pointer to an array can be

generated.

A pointer variable can store the

address of only one variable at a

time.

Used for dynamic memory

allocation.

By Dr. Amol Dhumane

Accessing Array Elements Using
Pointer

#include <iostream>

using namespace std;

int main()

{

 int arr[5] = {5, 2, 9, 4, 1};

 int *ptr = &arr[2];

 cout<<"The value in the second
index of the array is: "<< *ptr;

 return 0;

 }

Output :

The value in the second index of
the array is: 9

By Dr. Amol Dhumane

Array and Pointer

int main()

{

 int a[4], i;

 int*ptr;

 for(i=0;i<5;i++) // Elements inserted into an array

 {

 cin>>a[i];

 }

 ptr=a; //pointer initialized with base address of an array

 for(i=0;i<5;i++)

 {

 cout<<*(ptr+i); //array is printed using the pointer

 }

 return 0;

}

By Dr. Amol Dhumane

Observations: Array and Pointer

By Dr. Amol Dhumane

Arrays of Pointers

• Arrays of Pointers : Addresses of array elements.

By Dr. Amol Dhumane

Array of Pointers

#include <iostream>

using namespace std;

const int MAX = 4;

int main ()

{

 int a[MAX] = {10, 20, 30,40};

 int *p [MAX];

 for (int i = 0; i < MAX; i++)

{

 // assign the address of integers

 p [i] = &a[i];

 }

for (int i = 0; i < MAX; i++)

{

 cout << "Value of var[" << i << "] = ";
cout << *p[i] << endl;

}

return 0;

}

Output :

Value of var[0] = 10

Value of var[1] = 20

Value of var[2] = 30

Value of var[3] = 40

By Dr. Amol Dhumane

Function Pointers

• Pointer contains the address
of function.

• Function name is starting
address of code that defines
function.

Syntax :

Ret_type (fun_pointer)(arg.);

e.g.

 int (*ftr)(int,int);

Function pointers can be

• Passed to functions

• Returned from functions.

• Stored in arrays

• Assigned to other function
pointers

By Dr. Amol Dhumane

Program of Function Pointers

void one(int a, int b)

{

 cout << a+b << "\n";

}

void two(int a, int b)

{

 cout << a+b << "\n";

}

int main()

{

 //Declare a function pointer

 void (*fptr)(int, int);

 fptr = one;

 fptr(12, 3); //=> one(12, 3)

 fptr = two;

 fptr(12, 2); //=> two(12, 2)

 return 0;

 }

Output : 15

 10

By Dr. Amol Dhumane

Function Pointer to class member
function

#include <iostream>

using namespace std;

class Data

{

 public:

 int f(float)

 {

 return 10;

 }

};

int main()

{

 int (Data::*fp2) (float); // Declaration

 Data obj;

 fp2 = &Data::f; // Assignment

 cout<<(obj.*fp2)(20.0);

}

By Dr. Amol Dhumane

Function Pointer to class member
function

class sample

 {

public:

 int i;

 Number()

 { i = 0; }

int one()

 { return i+1; }

int two()

 { return i+2; }

};

int main()

{

 sample object;

 int (sample::*NumberPtr)();

 NumberPtr = & sample ::one;

 cout << (object.*NumberPtr)() << endl;

 NumberPtr = & sample ::two;

 cout << (object.*NumberPtr)() << endl;

 return 0;

}

Output : 1 2

By Dr. Amol Dhumane

Pointers to Pointers

• A pointer to a pointer is a form of multiple indirection or a chain of
pointers.

A pointer to a pointer,

the first pointer

contains the address

of the second pointer,

which points to the

location that contains

the actual value.

By Dr. Amol Dhumane

Pointers to Pointers

int main()

{

 int *vptr;

 int ** intptr;

 int var = 10;

 vptr = &var;

 intptr = &vptr;

 cout<<"Variable var: "<<var<<endl;

 cout<<"Pointer to Var: "<<*vptr<<endl;

 cout<<"Pointer to Pointer : "<<**intptr;

 return 0;

}

Output :

 Variable var: 10
Pointer to Variable: 10
Pointer to Pointer to a variable: 10

By Dr. Amol Dhumane

Pointers to Derived classes

•Pointers can be declared to point base or derived
classes.

•Base class pointer can point to objects of base and
derived class.

•Pointer to derived class object cannot point to
objects of base class.

By Dr. Amol Dhumane

Pointers to derived class

class Base

{

 public:

 int x;

};

class derived:public Base

{

 public:

 int y;

};

int main()

{

 Base *base_ptr;

 derived der_ob;

 base_ptr=&der_ob;

 derived*der_ptr;

 Base base_ob;

 der_ptr=&base_ob;

 return 0;

}

Will work

Won’t work

By Dr. Amol Dhumane

Pointers to derived class

#include <iostream.h>
class Base
{
 public:
 int x;
 void show ()
 {
 cout<<”X=”<<x<<endl;
 }
};
class Derive: public Base
{
 public:
 int y;
 void display ();
 {
 cout<<”X=”<<x<<endl;
 cout<<”Y=”<<y<<endl;
 }
};

int main ()
{
 Base B1;
 Base *ptr;
 ptr = &B1;
 ptr->x = 10;
 ptr->show();

 Derive D1;
 Derive *ptr1;
 ptr1 = &D1;
 ptr1->x = 10;
 ptr1->y = 20;
 ptr1->display ();
}

• Output:
X= 10
X = 10
Y = 20

By Dr. Amol Dhumane

Access derived class member from
base class pointer : using typecast

#include <iostream.h>
class Base
{
 public:
 int x;
 void show ()
 {
 cout<<”X=”<<x<<endl;
 }
};
class Derive: public Base
{
 public:
 int y;
 void display ();
 {
 cout<<”X=”<<x<<endl;
 cout<<”Y=”<<y<<endl;
 }
};

int main()

{

 Derive D1;

 Base *ptr;

 ptr = &D1;

 ptr->x = 10;

 ptr->show();

 static_cast<Derive*>(ptr)->y=20;

 static_cast<Derive*>(ptr)->display ();

return 0;

}

By Dr. Amol Dhumane

Passing Pointers To Functions

• C++ allows you to pass a pointer to a function. To do so,
simply declare the function parameter as a pointer
type.

•Advantages :

- Flexible: can change the value of the object.

- Fast: only need to copy a pointer not the whole object.

•Disadvantages:

- Unsafe: can change value of the variable in calling
function.

- Complex: variable is pointer so needs * or -> to access.

By Dr. Amol Dhumane

Passing Pointers To Functions

#include <iostream>

#include <string>

using namespace std;

void swap(int* a, int* b)

{

 int temp;

 temp = *a;

 *a = *b;

 *b = temp;

}

int main()

{

 int a, b;

 cout<<"Enter values for swapping";

 cin>>a>>b;

 swap(&a,&b);

 cout<<"Swapped values"<<endl;

 cout<<"a = "<<a<<"\t"<<"b = "<<b;

 return 0;

}

Output:

Enter values for swapping: 3 2

Swapped values

a = 2 b = 3

By Dr. Amol Dhumane

Return Pointers from Functions

#include<iostream>

#include<cstring>

using namespace std;

int* show (int*m)

{

 *m=*m*10;

 return m;

}

int main()

{

 int *x;

 int y=10;

 x=show(&y);

 cout<<"\nOutput is ="<<*x;

 return 0;

}

Output:

Output is 100

By Dr. Amol Dhumane

Return Pointers from Functions

• Pointers is a variable which is used to store the memory
address of another variable.

• It is not recommended to return the address of a local
variable outside the function as it goes out of scope
after function returns.

• So to execute the concept of returning a pointer from
function in C/C++ you must define the local variable as a
static variable.

By Dr. Amol Dhumane

Return Pointers from Functions

#include<iostream>

#include<cstring>

using namespace std;

int* show ()

{

 static int p;

 cout<<"Enter value";

 cin>>p;

 return &p;

}

int main()

{

 int *x;

 x=show();

 cout<<"\nValue=";

 cout<<*x;

 return 0;

}

By Dr. Amol Dhumane

Null pointer

• Besides memory addresses,
there is one additional value
that a pointer can hold: a null
value.

• A null value is a special value
that means the pointer is not
pointing at anything.

• A pointer holding a null value is
called a null pointer.

#include <iostream>

 using namespace std;

 int main ()

{

 int *ptr = NULL;

 cout << “ptr value = " << ptr ;

 return 0;

}

Output :

ptr value = 0

By Dr. Amol Dhumane

Void pointer

• In C++, you cannot assign the
address of variable of one type
to a pointer of another type.

 e.g.

 int *ptr;

 double d = 9;

 ptr = &d; // Error: can't
assign double* to int*

• To avoid it, make use of general
purpose pointer i.e. void
pointer.

• It holds the address of any data
type, but it is not associated
with any data type.

• Syntax :

 void *ptr;

• The size of void pointer varies
system to system. For 16 bit
system it is 16-bit. For 32 bit
system, it is 32-bit and for 64 bit
system the size is 64-bit.

By Dr. Amol Dhumane

Void pointer

#include <iostream>

using namespace std;

 int main()

 {

 void* ptr;

 float f = 2.3;

 ptr = &f;

 cout << &f << endl;

 cout<<ptr;

 cout<<*((float*)ptr);

 return 0;

 }

Output :

0xffd117ac

0xffd117ac

2.3

By Dr. Amol Dhumane

Case Study

Firefox developed using C++:

Refer the following link.

+https://www-archive.mozilla.org/hacking/coding-introduction

By Dr. Amol Dhumane

Virtual Function

By Dr. Amol Dhumane

Rules for Virtual Function

•Must be members of some class.

•Cannot be static member.

•Accessed through object pointers.

•Can be a friend of another class.

•Must be defined in the base class, even though it is
not used.

•The prototypes of a virtual function of the base
class and all the derived classes must be identical.

By Dr. Amol Dhumane

Virtual function

class A

{

 public:

 virtual void display()

 {

 cout << "Base class is invoked"<<endl;

 }

};

class B:public A

{

 public:

 void display()

 {

 cout << "Derived Class is invoked"<<endl;

 }

};

int main()

{

 A* a,ob; //pointer of base class

 B b; //object of derived class

 //call derived class function

 a = &b;

 a-

>display(); //Late Binding occurs

 //call base class function

 a = &ob;

 a-

>display(); //Late Binding occurs

}

Output :

Derived Class is invoked

Base class is invoked

By Dr. Amol Dhumane

Pure Virtual Function

•declared in the base class that has no definition
relative to the base class.

•Syntax :

 virtual return type fun_name=0;

• e.g.

 virtual void show()=0;

By Dr. Amol Dhumane

Virtual function program

• A class is abstract if it has at

least one pure virtual function.

• If we do not override the pure

virtual function in derived class,

then derived class also becomes

abstract class.

• Abstract class can’t be

instantiated directly.

• An abstract class can have

constructors.

• We can have pointers and

references of abstract class

type.

