
Presented by,
Prof. Rupali Shende

Inheritance

OOP Concept

 Another fundamental object-oriented
technique is inheritance, used to
organize and create reusable classes

 focuses on:

 deriving new classes from existing classes
 creating class hierarchies
 the protected modifier
 polymorphism via inheritance
 inheritance hierarchies for interfaces
 inheritance used in graphical user interfaces

2

Introduction

 The idea behind inheritance in Java is
that you can create new classes that
are built upon existing classes.

 When you inherit from an existing
class, you can reuse methods and
fields of the parent class.

 Moreover, you can add new methods
and fields in your current class also.

Why use inheritance

 For Method Overriding (so runtime
polymorphism can be achieved).

 For Code Reusability.

Inheritance

 Inheritance allows a software developer to
derive a new class from an existing one

 The existing class is called the parent
class, or superclass, or base class

 The derived class is called the child class
or subclass.

 As the name implies, the child inherits
characteristics of the parent

 That is, the child class inherits the
methods and data defined for the parent
class 5

Inheritance

 To use a derived class, the
programmer can add new variables
or methods, or can modify the
inherited ones

 Software reuse is at the heart of
inheritance

 By using existing software
components to create new ones, we
capitalize on all the effort that went
into the design, implementation, and
testing of the existing software

Inheritance
 Inheritance relationships often are shown

graphically in a UML class diagram, with
an arrow with an open arrowhead
pointing to the parent class

7

Inheritance should create an is-a
relationship, meaning the child is a more

specific version of the parent

Vehicle

Car

Terms used in
Inheritance
 Class: A class is a group of objects which have

common properties. It is a template or blueprint
from which objects are created.

 Sub Class/Child Class: Subclass is a class
which inherits the other class. It is also called a
derived class, extended class, or child class.

 Super Class/Parent Class: Superclass is the
class from where a subclass inherits the
features. It is also called a base class or a parent
class.

 Reusability: As the name specifies, reusability
is a mechanism which facilitates you to reuse
the fields and methods of the existing class
when you create a new class. You can use the
same fields and methods already defined in the
previous class.

Deriving Subclasses
 In Java, we use the reserved word extends to establish an

inheritance relationship

 The syntax of Java Inheritance
 class Subclass-name extends Superclass-name
 {
 //methods and fields
 }

 The extends keyword indicates that you are making a
new class that derives from an existing class. The meaning
of "extends" is to increase the functionality.

9

class Car extends Vehicle

{

 // class contents

}

Inheritance Example

 Programmer salary is:40000.0
 Bonus of programmer is:10000

Types of inheritance in
java

Types

Single Inheritance

 When a class
inherits
another
class, it is
known as
a single
inheritance.

Output This is a
Vehicle

Multilevel Inheritance

 When there is a
chain of
inheritance, it is
known
as multilevel
inheritance.

OutputThis is a
Vehicle Objects with 4
wheels are vehicles Car
has 4 Wheels

Multiple Inheritance

 In Multiple
inheritances,
one class can
have more
than one
super-class
and inherit
features from
all parent
classes.

Output
This is a Vehicle
This is a 4
wheeler Vehicle

Hierarchical Inheritance

 When two or
more classes
inherits a
single class, it
is known
as hierarchical
inheritance.

The protected Modifier

 Visibility modifiers determine which
class members are inherited and
which are not

 Variables and methods declared with
public visibility are inherited; those
with private visibility are not

 There is a third visibility modifier that
helps in inheritance situations:
protected

18

The protected Modifier

 The protected modifier allows a
member of a base class to be inherited
into a child

 Protected visibility provides more
encapsulation than public visibility does

 However, protected visibility is not as
tightly encapsulated as private visibility

19

Hybrid Inheritance

 It is a
mix of
two or
more of
the
above
types of
inherita
nce.

Important facts about
inheritance

 Default superclass: Except Object class,
which has no superclass, every class has one
and only one direct superclass (single
inheritance). In the absence of any other
explicit superclass, every class is implicitly a
subclass of the Object class.

 Superclass can only be one: A superclass
can have any number of subclasses. But a
subclass can have only one superclass. This is
because Java does not support multiple
inheritances with classes. Although with
interfaces, multiple inheritances are supported
by java.

Important facts..

 Inheriting Constructors: A subclass inherits
all the members (fields, methods, and nested
classes) from its superclass. Constructors are
not members, so they are not inherited by
subclasses, but the constructor of the
superclass can be invoked from the subclass.

 Private member inheritance: A subclass
does not inherit the private members of its
parent class. However, if the superclass has
public or protected methods(like getters and
setters) for accessing its private fields, these
can also be used by the subclass.

Benefits of Inheritance
 Inheritance helps in code reuse. The child class may

use the code defined in the parent class without re-
writing it.

 Inheritance can save time and effort as the main code
need not be written again.

 Inheritance provides a clear model structure which is
easy to understand.

 An inheritance leads to less development and
maintenance costs.

 With inheritance, we will be able to override the
methods of the base class so that the meaningful
implementation of the base class method can be
designed in the derived class. An inheritance leads to
less development and maintenance costs.

 In inheritance base class can decide to keep some data
private so that it cannot be altered by the derived class.

Costs of Inheritance

 Inheritance decreases the execution speed
due to the increased time and effort it takes,
the program to jump through all the levels of
overloaded classes.

 Inheritance makes the two classes (base and
inherited class) get tightly coupled. This
means one cannot be used independently of
each other.

 The changes made in the parent class will
affect the behavior of child class too.

 The overuse of inheritance makes the program
more complex.

Method Overriding

 In any object-oriented programming language,
Overriding is a feature that allows a subclass
or child class to provide a specific
implementation of a method that is already
provided by one of its super-classes or parent
classes.

 When a method in a subclass has the same
name, same parameters or signature, and
same return type(or sub-type) as a method in
its super-class, then the method in the
subclass is said to override the method in the
super-class.

Method Overriding

 If an object of a parent
class is used to invoke
the method, then the
version in the parent
class will be executed,
but if an object of the
subclass is used to
invoke the method, then
the version in the child
class will be executed. In
other words, it is the
type of the object being
referred to (not the type
of the reference variable)
that determines which
version of an overridden
method will be executed.

Example

 The
purpose of
Method
Overriding
is clear
here. Child
class wants
to give its
own
implementa
tion

Advantage of method
overriding
 The main advantage of method overriding is

that the class can give its own specific
implementation to a inherited
method without even modifying the
parent class code.

 This is helpful when a class has several child
classes, so if a child class needs to use the
parent class method, it can use it and the
other classes that want to have different
implementation can use overriding feature to
make changes without touching the parent
class code.

Rules of method overriding
 Argument list: The argument list of overriding

method (method of child class) must match
the Overridden method(the method of parent
class). The data types of the arguments and
their sequence should exactly match.

 Access Modifier of the overriding method
(method of subclass) cannot be more
restrictive than the overridden method of
parent class. For e.g. if the Access Modifier of
parent class method is public then the
overriding method (child class method)
cannot have private, protected and default
Access modifier,because all of these three
access modifiers are more restrictive than
public.

Rules

 private, static and final methods
cannot be overridden as they are
local to the class. However static
methods can be re-declared in the
sub class, in this case the sub-class
method would act differently and will
have nothing to do with the same
static method of parent class.

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

