
Unit III - Polymorphism

Presented by,
Prof. Rupali Shende

Introduction

• The term "Polymorphism" is the combination of
"poly" + "morphs" which means many forms. It
is a greek word.

• In object-oriented programming, we use 3 main
concepts: inheritance, encapsulation, and
polymorphism.

• It simply means more than one form. That is,
the same entity (function or operator) behaves
differently in different scenarios.

Real-life example

• A lady behaves like a teacher in a classroom,
mother or daughter in a home and customer
in a market. Here, a single person is behaving
differently according to the situations.

For example
• The + operator in C++ is used to perform two specific functions. When it is

used with numbers (integers and floating-point numbers), it performs
addition.

• int a = 5; int b = 6;
• int sum = a + b;
• // sum = 11
• And when we use the + operator with strings, it performs string

concatenation.
• For example,
• string firstName = "abc ";
• string lastName = "xyz";
• // name = "abc xyz"
• string name = firstName + lastName;

Inheritance v/s Polymorphism

• Inheritance lets us inherit attributes and methods
from another class. Polymorphism uses those
methods to perform different tasks. This allows
us to perform a single action in different ways.

• For example, think of a base class
called Animal that has a method
called animalSound(). Derived classes of Animals
could be Pigs, Cats, Dogs, Birds - And they also
have their own implementation of an animal
sound (the pig oinks, and the cat meows, etc.)

Inheritance v/s Polymorphism
Example

• // Base class
class Animal {
 public:
 void animalSound() {
 cout << "The animal makes a sound
\n" ;
 }
};
// Derived class
class Pig : public Animal {
 public:
 void animalSound() {
 cout << "The pig says: wee wee \
n" ;
 }
};

// Derived class
class Dog : public Animal {
 public:
 void animalSound() {
 cout << "The dog says: bow wow \n" ;
 }
};
int main() {
 Animal myAnimal;
 Pig myPig;
 Dog myDog;

 myAnimal.animalSound();
 myPig.animalSound();
 myDog.animalSound();
 return 0;
}

Why Polymorphism?

• Polymorphism allows us to create consistent
code. For example,

• Suppose we need to calculate the area of a circle
and a square. To do so, we can create
a Shape class and derive two
classes Circle and Square from it.

• In this case, it makes sense to create a function
having the same name calculateArea() in both the
derived classes rather than creating functions
with different names, thus making our code more
consistent.

 Types of polymorphism in C++

• Compile time Polymorphism
• Runtime Polymorphism

Compile Time Polymorphism

• You invoke the overloaded functions by
matching the number and type of arguments.
The information is present during compile-time.
This means the C++ compiler will select the
right function at compile time.

• Compile-time polymorphism is achieved
through function overloading and operator
overloading.

• Compile-time polymorphism is also known as
early binding and Static polymorphism

Runtime Polymorphism

• This happens when an object's method is
invoked/called during runtime rather than
during compile time.

• Runtime polymorphism is achieved through
function overriding. The function to be
called/invoked is established during runtime.

• Run-time polymorphism is also known as late
binding and Dynamic polymorphism.

Concept of Overloading

• Creating two or more members that have the
same name but are different in number or
type of parameter is known as overloading.

• An overloaded declaration is a declaration
that is declared with the same name as a
previously declared declaration in the same
scope, except that both declarations have
different arguments and obviously different
definition (implementation).

• In C++, we can overload:
Methods
Constructors
Indexed Properties

C++ Function Overloading

• Function overloading occurs when we have
many functions with similar names but different
arguments. The arguments may differ in terms
of number or type.

• In C++, we can use two functions having the
same name if they have different parameters
(either types or number of arguments).

• And, depending upon the number/type of
arguments, different functions are called.

• Function Overloading is defined as the process of having
two or more function with the same name, but different
in parameters is known as function overloading in C++.

• In function overloading, the function is redefined by
using either different types of arguments or a different
number of arguments. It is only through these
differences compiler can differentiate between the
functions.

• The advantage of Function overloading is that it
increases the readability of the program because you
don't need to use different names for the same action.

#include <iostream>

using namespace std;

// Function with 2 int parameters

int sum(int num1, int num2) {

 return num1 + num2;

}

// Function with 2 double parameters

double sum(double num1, double num2) {

 return num1 + num2;

}

// Function with 3 int parameters

int sum(int num1, int num2, int num3) {

 return num1 + num2 + num3;

}

int main() {
 // Call function with 2 int parameters
 cout << "Sum 1 = " << sum(5, 6) << endl;

 // Call function with 2 double parameters
 cout << "Sum 2 = " << sum(5.5, 6.6) <<
endl;

 // Call function with 3 int parameters
 cout << "Sum 3 = " << sum(5, 6, 7) << endl;

 return 0;
}

Output
Sum 1 = 11
Sum 2 = 12.1
 Sum 3 = 18

C++ Operator Overloading

• Another example of static polymorphism is Operator
overloading. Operator overloading is a way of
providing new implementation of existing operators
to work with user-defined data types.

• We cannot use operator overloading for basic types
such as int, double, etc.

• Operator overloading is basically function
overloading, where different operator functions have
the same symbol but different operands.

• And, depending on the operands, different operator
functions are executed.

EXAMPLE
class Count {

 private:

 int value;

 public:

 // Constructor to initialize count to 5

 Count() : value(5) {}

 // Overload ++ when used as prefix

 void operator ++() {

 value = value + 1;

 }

 void display() {

 cout << "Count: " << value << endl;

 }

};

int main() {
 Count count1;

 // Call the "void operator ++()" function
 ++count1;

 count1.display();
 return 0;
}
Output
Count: 6

Here, we have overloaded the ++ operator,
which operates on objects of Count class
(object count1 in this case).
We have used this overloaded operator to
directly increment the value variable
of count1 object by 1.

Unary Operators Overloading

• The unary operators operate on a single operand and
following are the examples of Unary operators −

• The increment (++) and decrement (--) operators.
• The unary minus (-) operator.
• The logical not (!) operator.
• The unary operators operate on the object for which

they were called and normally, this operator appears
on the left side of the object, as in !obj, -obj, and ++obj
but sometime they can be used as postfix as well like
obj++ or obj--.

Example - minus (-) operator overloaded for prefix & postfix
usage

class Distance {
 private:
 int feet; // 0 to infinite
 int inches; // 0 to 12

 public:
 // required constructors
 Distance() {
 feet = 0;
 inches = 0;
 }
 Distance(int f, int i) {
 feet = f;
 inches = i;
 }

 // method to display distance
 void displayDistance() {
 cout << "F: " << feet << " I:" << inches <<endl;
 }

// overloaded minus (-) operator
 Distance operator- () {
 feet = -feet;
 inches = -inches;
 return Distance(feet, inches);
 }
};

int main() {
 Distance D1(11, 10), D2(-5, 11);

 -D1; // apply negation
 D1.displayDistance(); // display D1

 -D2; // apply negation
 D2.displayDistance(); // display D2

 return 0;
}
Output:

F: -11 I:-10
F: 5 I:-11

Binary Operators Overloading

• The binary operators take two arguments and
following are the examples of Binary operators.
You use binary operators very frequently like
addition (+) operator, subtraction (-) operator
and division (/) operator.

• Following example explains how addition (+)
operator can be overloaded. Similar way, you
can overload subtraction (-) and division (/)
operators.

Example
class Box {
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box

 public:
 double getVolume(void) {
 return length * breadth * height; }
 void setLength(double len) {
 length = len; }
 void setBreadth(double bre) {
 breadth = bre;
 }
 void setHeight(double hei) {
 height = hei;
 }
 // Overload + operator to add two Box objects.
 Box operator+(const Box& b) {
 Box box;
 box.length = this->length + b.length;
 box.breadth = this->breadth + b.breadth;
 box.height = this->height + b.height;
 return box;
 }
};

// Main function for the program
int main() {
 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box
 Box Box3; // Declare Box3 of type Box
 double volume = 0.0; // Store the volume of a box here

 // box 1 specification
 Box1.setLength(6.0);
 Box1.setBreadth(7.0);
 Box1.setHeight(5.0);

 // box 2 specification
 Box2.setLength(12.0);
 Box2.setBreadth(13.0);
 Box2.setHeight(10.0);

 // volume of box 1
 volume = Box1.getVolume();
 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2
 volume = Box2.getVolume();
 cout << "Volume of Box2 : " << volume <<endl;

 // Add two object as follows:
 Box3 = Box1 + Box2;

 // volume of box 3
 volume = Box3.getVolume();
 cout << "Volume of Box3 : " << volume <<endl;

 return 0;
}

Compile-Time Vs. Run-Time
Polymorphism

Compile-time polymorphism Run-time polymorphism

It's also called early binding or static
polymorphism

It's also called late/dynamic binding or
dynamic polymorphism

The method is called/invoked during
compile time

The method is called/invoked during run
time

Implemented via function overloading and
operator overloading

Implemented via method overriding and
virtual functions

Example, method overloading. Many
methods may have similar names but
different number or types of arguments

Example, method overriding. Many methods
may have a similar name and the same
prototype.

Faster execution since the methods
discovery is done during compile time

Slower execution since method discoverer is
done during runtime.

Less flexibility for problem-solving is
provided since everything is known during
compile time.

Much flexibility is provided for solving
complex problems since methods are
discovered during runtime.

Thank You!

	Unit III - Polymorphism
	Introduction
	Real-life example
	For example
	Inheritance v/s Polymorphism
	Inheritance v/s Polymorphism Example
	Why Polymorphism?
	 Types of polymorphism in C++
	Compile Time Polymorphism
	Runtime Polymorphism
	Concept of Overloading
	Slide 12
	C++ Function Overloading
	Slide 14
	Slide 15
	C++ Operator Overloading
	EXAMPLE
	Unary Operators Overloading
	Example - minus (-) operator overloaded for prefix & postfix us
	Binary Operators Overloading
	Example
	Compile-Time Vs. Run-Time Polymorphism
	Slide 23

