

Contents
 Managing I/O console

 C++ Stream Classes

 Formatted and Unformatted Console I/O

 Usage of Manipulators

Managing I/O console
 C++ supports a rich set of I/O functions and

operations.

 It uses the concept of stream and stream classes to

implement its I/O operations with the console and

disk files.

C++ Streams
 The I/O system supplies an interface to the programmer

that is independent of the actual device being accessed.

 This interface is known as stream.

 A stream is a sequence of bytes.

 The source stream that provides data to the program is

called the input stream.

 The destination stream that receives output from the

program is called the output stream.

C++ Streams

C++ Stream Classes
 The C++ I/O system contains a hierarchy of classes

that are used to define various streams to deal with

both the console and disk files.

 These classes are called stream classes.

 These classes are declared in the header file iostream.

C++ Stream Classes

C++ Stream Classes
 The class ios provides the basic support for formatted and

unformatted I/O operations.

 The class istream provides the facilities for formatted and

unformatted input while the class ostream provides the facilities

for formatted output.

 The class iostream provides the facilities for handling both input

and output streams.

 Three classes istream_withassign, ostream_withassign and

iostream_withassign add assignment opreators to these classes.

Stream classes for console operations

Unformatted I/O Operations

 Overloaded Operators >> and <<

 put() and get() functions

 getline() and write() functions

Overloaded Operators >> and <<
 The objects cin and cout are used for the input and output of

data of various types by overloading >> and << operators.

 The >> operator is overloaded in the istream class and << is

overloaded in the ostream class.

 The general format for reading data from keyboard is:

cin >> variable1 >> variable2 >> >> variableN

 The input data are separated by white spaces and should match

the type of variable in the cin list.

Overloaded Operators >> and <<
 The operator reads the data character by character and assigns it to the

indicated location.

 The reading for a variable will be terminated at the encounter of a

whitespace or a character that does not match the destination type.

 Eg:

int code;

cin >> 4258D

 The operator will read the characters upto 8 and the value 4258 is

assigned to code.

Overloaded Operators >> and <<

 The general form for displaying data on screen is:

cout << item1 << item2 << << itemN

 The items item1 through itemN may be the variables or

constants of any basic type.

put () and get () Functions
 The classes istream and ostream define two member

functions get() and put() to handle the single character

input and output operations.

 There are two types of get() functions : get (char *) and get

(void).

 get(char *) version assigns the input character to its

argument.

 get(void) version returns the input character.

put () and get () Functions
 The function put() is used to output a line of text

character by character.

cout.put(‘x’); - Displays the character x

cout.put(ch); - Displays the value of variable ch.

 The variable ch must contain a character value.

cout.put(68);

What happen if this
statement is executed ?

The statement will convert
68 to char value and display

character D.

getline() and write () Functions
 The getline() function reads a whole line of text that ends

with a newline character.

 This function can be invoked by using the object cin.

cin.getline (line, size);

 The function getline() which reads character input into the

variable line.

 The reading is terminated as soon as either the newline

character is read or size-1 characters are read.

getline() and write () Functions
 The write() function displays an entire line.

cout.write(line, size);

 The first argument line represents the name of the

string to be displayed and the second argument size

indicates the number of characters to display.

Formatted I/O Operations
 C++ supports a number of features that could be used

for formatting the output.

 ios class functions and flags

 Manipulators

 User-defined output functions.

ios class functions and flags

Functions Task

Width() To specify the required field size for displaying
an output value.

Precision() To specify the number of digits to be displayed
after the decimal point of a float value.

Fill() To specify a character that is used to fill the
unused portion of a field.

Setf() To specify format flags that can control the
form of output display.

Unsetf() To clear the flags specified

Defining Field Width: width()
 The width() function to define the width of a field necessary for

the output of an item.

cout.width(w);

 Where w is the field width. The output will be printed in a field

of w characters wide at the right end of the field.

 Eg: cout.width(5);

cout<< 543;

cout.width(5);

cout << 12;

Setting Precision: precision()
 We can specify the number of digits to be displayed after

the decimal point while printing the floating point

numbers.

cout.precision(d);

 Where d is the number of digits to the right of the decimal

point.

 Eg: cout.precision(3);

cout<< sqrt(2) << “\n”; - 1.141

cout << 3.14159; - 3.142

Filling and Padding: fill()
 The unused positions of the field are filled with white spaces.

 However, the fill() function can be used to fill the unused

positions by any desired character.

cout.fill(ch);

 Where ch represents the character which is used for filling the

unused positions.

 Eg: cout.fill(‘*’);

cout.width(10);

cout << 5250 ;

Formatting Flags, Bit-fields and
setf()
 The setf() member function of the ios class is used for various

types of formatting.

 Syntax:

cout.setf(arg1, arg2)

 The arg1 is one of the formatting flags, specifying the action

required for the output.

 The arg2 known as bit field specifies the group to which the

formatting flag belongs.

 There are three bit fields and each has a group of format flags.

Formatting Flags, Bit-fields and
setf()

Formatting Flags, Bit-fields and
setf()

 Consider the following segment of code:

cout.fill(‘*’);

cout.setf(ios::left, ios::adjustfield);

cout.width(15);

cout<< “TABLE 1” << “\n”;

 Will produce the following output:

Displaying trailing zeros and Plus
sign
 The setf() can be used with a single argument for

achieving various format of output.

 Their are some flags that do not have bit fields.

Managing Output with
Manipulators
 The header file iomanip provides a set of functions called

manipulators which can be used to manipulate the output

formats.

 They provide the same features as that if the ios member

functions and flags.

 Manipulators can be used as a chain in one statement as:

cout << manip1 << manip2 << mainp3 << item;

cout << mainp1 << item1 << manip2 << item2;

Manipulators and their meaning

Manipulator Meaning Equivalent

setw (int w) Set the field width to w. width()

setprecision (int d) Set the floating point
precision to d.

precision()

setfill (int c) Set the fill character to c. fill()

setiosflags (long f) Set the format flag f. setf()

resetiosflags (long f) Clear the flag specified by f. unsetf()

endl Insert new line and flush
stream.

“\n”

Managing Output with
Manipulators
 Examples:

 cout << setw(10) << 12345;

 Prints the value 12345 right justified in a field width 10.

 cout << setw(10) <<setprecision(4) << sqrt(2);

 Prints the value of sqrt(2) with 4 decimal places in the field

width 10.

 cout << endl;

 Inserts a new line.

User-defined output functions
 The programmer can also define his own manipulator

according to the requirement of the program.

 Syntax:

ostream & m_name (ostream & o)

{

statement 1;

statement 2;

return 0;

}

 The m_name is the name of the manipulator.

User-defined output functions
ostream & tab (ostream & o)

{

o << “\t”;

return o;

}

void main()

{

clrscr();

cout << 1 << tab << 2 << tab << 3 ;

}

Working of tab manipulator

Summary
 ______ is a sequence of bytes and serves as a source or

destination for an I/O data.

 The source stream that provides data to the program is called
_____ stream and the destination stream that receives output
from the program is called ________ stream.

 The istream and ostream classes define two member functions
_____ and _____ to handle the single character I/O operations.

 The >> operator is overloaded in the _____ class and an
extraction operator << is overloaded in the ____ class.

 The functions width(), precision(), fill(), setf() for formatting the
output are present in ____ class.

 _____ provides a set of manipulators functions to manipulate
output formats.

Short Answer Questions
 Discuss the various forms of get() functions supported

by the input stream. How are they used?

 There are two types of get() functions : get (char *) and

get (void).

 get(char *) version assigns the input character to its

argument.

 get(void) version returns the input character.

Short Answer Questions
 How do the following two statements differ in operation?

cin >> c;

cin.get(c);

 The first statement using the overloaded >> operator will skip

the white spaces and newline character.

 The second statement will fetch a character including the

blank space, tab and newline character.

Short Answer Questions
 What does the following statement do?

cout.write(s1,m).write(s2,n);

 The above statement is used to concatenate two strings using

the write() function.

 What is the difference between put() and write() ?

 The put() is used to output a line of test character by

character.

 The write() is used to display an entire line.

Short Answer Questions
 What will be the output of following statements:

cout.setf(ios :: showpoint);

cout.setf(ios :: showpos);

cout.precision(3);

cout.setf(ios :: fixed, ios :: floatfield);

cout.setf(ios :: internal, ios :: adjustfield);

cout.width(10);

cout << 275.5 << “\n”;

Short Answer Questions
 What is the basic difference between manipulators

and ios member functions in implementation? Give

examples.

 Manipulators are more convenient to use than compare

to ios member functions.

 The manipulators cab ne used as a chain in one

statement as:

cout << manip1 << manip2 << manip3 << item;

References
 Object Oriented Programming with C++ by E.

Balagurusamy.

Contents

• File operations : Text files , Binary Files

• File stream class and methods

• File updation with random access

• Overloading insertion and extraction operator

Quiz 1

• What is a file?

▫ A computer file is a computer resource for

recording data discretely in a computer storage

device.

Introduction

• Many real-life problems handle large volumes of

data.

• The data is stored in the devices using the concept of

files.

• A file is a collection of related data stored in a

particular area on the disk.

• Programs are designed to perform read and write

operations on these files.

Console-Program-File interaction

Program File Communication

• In C++ file streams are used as an interface

between the program and the files.

• The stream that supplies data to the program is

known as input stream and the one that receives

data from the program is known as output stream.

• Input stream => reads data

• Output stream => writes data

File input and Output Streams

Classes for File Stream Operations

ios

istream streambuf ostream

ifstream

iostream

fstream

fstream base

ofstream filebuf

iostream
file

fstream
file

Opening and Closing a File

• To open a file, a file stream is created and then it

is linked to the filename.

• A file can be opened in two ways:

▫ Using the constructor function of the class.

▫ Using the member function open() of the class.

• A file is closed by using the function close().

• eg: outfile.close();

Opening File using Constructor

• Filename is used to initialize the file stream object.

• Create a file stream object to manage the stream.

▫ ofstream is used to create output stream.

▫ ifstream is used to create input stream.

• Initialize the file object with the desired filename.

• Eg:

ofstream outfile (“results”); // output only

ifstream infile (“data”); // input only

Opening File using Constructor
#include<iostream.h>
#include<fstream.h>
int main()
{

ofstream outf(“Item”);
cout<<“Enter item name:”;
char name[30];
cin >> name;

outf<<name;
cout<<“Enter item cost:”;
float cost;
cin >> cost;

outf << cost;
outf.close();

Opening File using Constructor
ifstream inf(“Item”);

inf >> name;
inf >> cost;

cout << “Item name :” << name;
cout << “Item cost :” << cost ;

inf.close();
return 0;

}

Output:
Enter item name: CD-ROM
Enter item cost: 250

Item name: CD-ROM
Item cost: 250

Opening Files Using open()

• The function open() can be used to open

multiple files that use the same stream object.

• Syntax:

file-stream-class stream-object;

stream-object.open(“filename”);

• A stream object can be connected to only one file

at a time.

Opening Files Using open()
#include<iostream.h>
#include<fstream.h>

int main()
{

ofstream fout;
fout.open(“Country”);

fout<<“United state of America”;
fout<<“United Kingdom”;

fout.close();

fout.open(“Capital”);

fout<<“Washington”;
fout<<“London”;

fout.close();

Opening Files Using open()
const int N=80;
char line[N];

ifstream fin;
fin.open(“Country”);

cout<<“Contents of country file” ;
while(fin)
{

fin.getline(line, N);
cout<<line;

}
fin.close();

Opening Files Using open()

fin.open(“Capital”);

cout<<“Contents of capital file”;

while(fin)
{

fin.getline(line, N);
cout<<line;

}
fin.close();
return 0;

}

Detecting End-of File

• Detection of the end-of-file condition is necessary
for preventing any further attempt to read data from
the file.

while(fin)

• An ifstream object return a value zero if any error
occurs in the file operation including the end-of-file
condition.

if(fin1.eof() != 0) { exit(1); }

• The eof() of ios class returns a non zero value if the
end-of-file condition is encountered and zero
otherwise.

Opening two files simultaneously

• When two or more files are used simultaneously

ie: when we want to merge two files into a single

file.

• In such case we create two separate input

streams for handling the two input files and one

output stream for handling the output file.

Opening two files simultaneously

#include<iostream.h>

#include<fstream.h>

#include<stdlib.h>

int main()

{

const int size = 80;

char line[size];

ifstream fin1, fin2;

fin1.open(“country”);

fin2.open(“capital”);

Opening two files simultaneously

for(int i = 1; i <= 10; i++)

{

if (fin1.eof() ! = 0)

{

cout << “\n Exit from country \n ” ;

exit(1);

}

fin1.getline(line,size);

cout << “Capital of “ << line;

Opening two files simultaneously

if (fin2.eof() ! = 0)

{

cout << “ \n Exit from capital \n“ ;

exit(1);

}

fin2.getline(line, size);

cout << line << “\n”;

}

return 0;

}

Quiz 2

• What are default arguments?

▫ A default argument is a value provided in

function declaration that is automatically assigned

by the compiler if caller of the function doesn't

provide a value for the argument.

File Modes

• File mode specifies the purpose for which the file is
opened.

• File mode parameters:

▫ ios::app //Append to end-of-file

▫ ios::ate //go to end-of-file on opening

▫ ios::binary //Binary file

▫ ios::in //open file for reading only

▫ ios::nocreate //open fails if the file does not exists.

▫ ios::noreplace //open fails if the file already exists.

▫ ios::out //open file for writing only

▫ ios::trunc //delete the contents of file if it exists

File Pointers

• Each file has two associated pointers:

▫ get pointer or input pointer: used for reading the contents

of the file.

▫ put pointer or output pointer: used for writing to a given

file location.

• Default actions are associated with both the pointers.

▫ When a file is opened in read mode the input pointer is set

at the beginning.

▫ When a file is opened in write mode the existing contents

are deleted and output pointer is set at beginning.

Default Actions

Manipulation of File Pointers

• The user can control the movement of the pointers as per

his need by using the following functions:

▫ seekg() : moves get pointer to a specified location.

▫ seekp(): moves put pointer to a specified location.

▫ tellg() : gives the current position of the get pointer.

▫ tellp() : gives the current position of the put pointer.

Quiz 3

• Where will the file pointer point in the following
statement?

infile.seekg(10);

▫ The file pointer will point to the 11th byte in the file.

• Where will the file pointer point after execution of
the following statement?

ofstream fileout;

fileout.open(“hello”, ios::app);

int p = fileout.tellp();

▫ The output pointer is moved to the end of the file
and the value of p will represent the number of bytes
in the file.

File Pointers
• File pointers seekg() and seekp() can also be used with

two arguments:

▫ seekg(offset, refposition);

▫ seekp(offset, refposition);

• The parameter offset represents the number of bytes
the file pointer is to be moved from the location
specified by the parameter refposition.

• The refposition can take one of the following three
constants defined in the ios class:

▫ ios::beg // start of the file

▫ ios::cur // current position of the pointer

▫ ios::end //end of the file

File Pointers (Pointer Offset calls)

▫ fout.seekg(0,ios::beg); // go to start

▫ fout.seekg(0,ios::cur); // stay at the current position

▫ fout.seekg(0,ios::end); // go to end of the file

▫ fout.seekg(m,ios::beg); // move to (m+1)th byte in the file

▫ fout.seekg(m,ios::cur); //go forward by m byte from the

current position

▫ fout.seekg(-m,ios::cur); // go backward by m bytes from

the current position

▫ fout.seekg(-m,ios::end); //go backward by m bytes from

the end

Sequential Input & Output Operations

• The file stream class support a number of

member functions for performing the input and

output operations on files.

▫ put() and get() : used for handling a single

character.

▫ read() and write() : used for handling large blocks

of binary data.

Put() & Get() functions

• Function put() writes a single character to the

associated stream.

• Function get() reads a single character from the

associated stream.

Put() & Get() functions

#include<iostream.h>

#include<fstream.h>

#include<string.h>

int main()

{

char string[80];

cout << “Enter a string :\n ”;

cin >> string;

Put() & Get() functions

int len = strlen(string);

fstream file;

file.open(“Text”, ios::in | ios::out);

for(int i = 0; i < len ; i++)

file.put(string[i]);

file.seekg(0);

Put() & Get() functions

char ch;

while(file)

{

file.get(ch);

cout << ch;

}

return 0;

}

Reading & Writing a class object

• C cannot handle user defined data types such as class

objects.

• C++ provides read() and write() functions to read and

write the objects directly.

• The length of the object is obtained using the sizeof

operator.

• This length represents the sum total of lengths of all data

members of the object.

Reading & Writing a class object

• Syntax:

▫ infile.read ((char *) & V, sizeof (V));

▫ outfile.write ((char *) & V, sizeof (V));

• The first argument is the address of the variable V.

• The second is the length of that variable in bytes.

• The address of the variable must type cast to char *

(ie: pointer to character type).

Example

#include<iostream.h>
#include<fstream.h>
class inventory
{

char name[10];
int code;
float cost;
public:

void readdata(void);
void writedata(void);

};

Example cont…
void inventory :: readdata(void)
{

cout<<“Enter name:”;
cin>> name;
cout<<“Enter code:”;
cin>>code;
cout<<“Enter cost:”;
cin>> cost;

}
void inventory :: writedata(void)
{

cout<<name;
cout<<code;
cout<<cost;

}

Example cont…
int main()

{

inventory item[3];

fstream file;

file.open(“Stock.dat”, ios::in | ios::out);

cout<<“Enter the details for three items:”;

for(int i=0; i<3;i++)

{

item[i].readdata();

file.write((char *) & item[i], sizeof(item[i]));

}

Example cont…
file.seekg(0);

for(i=0;i<3;i++)

{

file.read((char *) & item[i], sizeof(item[i]));

item[i].writedata();

}

file.close();

return 0;

}

Updating a File: Random Access

• Updating is a routine task in the maintenance of

any data file.

• The updating would include one or more of the

following tasks:

▫ Displaying the contents of a file.

▫ Modifying an existing item.

▫ Adding a new item.

▫ Deleting an existing item.

Updating a File: Random Access

• The size of each object can be obtained using the
statement:

int obj_len = sizeof(object);

• The location of a desired object (say m) is
obtained as:

int location = m * obj_len;

• The total number of objects in a file can be
obtained by using object length as:

int n = file_size / obj_len;

Updating a File: Random Access
#include<iostream.h>
#include<fstream.h>

class inventory
{

char name[10];
int code;
float cost;
public:

void getdata(void)
{

cout<<“Enter name : ” ; cin>> name;
cout<<“Enter code : ” ; cin>>code;
cout<<“Enter cost : ” ; cin>> cost;

}

Updating a File: Random Access
void putdata(void)
{

cout<<name;
cout<<code;
cout<<cost;

}
};

int main()
{

inventory item;
fstream inoutfile;
inoutfile.open(“stock.dat”, ios::ate | ios::in | ios::out|
ios::binary);
inoutfile.seekg(0, ios::beg);

Updating a File: Random Access
while(inoutfile.read((char *) & item, sizeof item))
{

item.putdata();
}
inoutfile.clear(); //turn off EOF flag

cout<<“Add an item:”;
item.getdata();
inoutfile.write((char *) & item, sizeof item);
inoutfile.seekg(0);
while(inoutfile.read((char *) & item, sizeof item))
{

item.putdata();
}

Updating a File: Random Access
int last = inoutfile.tellg(); // finds the no. of objects

int n = last/sizeof(item);
cout<<“Number of objects:”<<n;
cout<<“Enter the object number to be updated:”;
int object;
cin>> object;
int location = (object-1)* sizeof(item);
inoutfile.seekp(location);

cout<<“Enter the new values of the object:”;
item.getdata();
inoutfile.write((char *) & item, sizeof item);

Updating a File: Random Access

inoutfile.seekg(0);

cout<<“Contents of updated file are:”;
while(inoutfile.read((char *) & item, sizeof item))
{

item.putdata();
}
inoutfile.close();

return 0;
}

Updating a File: Random Access

Output:

current contents of stock:

AA 11 100

BB 22 200

CC 33 300

Add an item:

Enter name: DD

Enter code: 44

Enter cost: 400

Updating a File: Random Access
Contents of Appended file:
AA 11 100
BB 22 200
CC 33 300
DD 44 400

Number of objects: 4
Enter the object to be updated: 4
Enter new values for object:
Enter name: EE
Enter code: 55
Enter cost: 500
Contents of updated file:
AA 11 100
BB 22 200
CC 33 300
EE 55 500

Error Handling During File Operations

• Following conditions may arise while dealing with
files:

▫ A file which we are attempting to open for reading does
not exists.

▫ The file name used for a new file may already exists.

▫ We may attempt an invalid operation such as reading
past the end-of-file.

▫ There may not be any space in the disk for storing more
data.

▫ We may use invalid file name.

▫ We may attempt to perform an operation when the file is
not opened for that purpose.

Error Handling During File Operations

• The ios class supports several member functions that can
be used to read the status recorded in a file stream.

Function Return value and meaning

eof() Returns true (non zero value) if end-of-file is encountered
while reading otherwise returns false (zero).

fail() Returns true when an input or output operation has failed.

bad () Returns true if an invalid operation is attempted or any
unrecoverable error has occurred. However, if it is false, it
may be possible to recover from any other error reported, and
continue operation.

good () Returns true if no error has occurred. When is returns false,
no further operations can be carried out.

Error Handling During File Operations
......

......

ifstream infile;

infile.open(“ABC”);

while (!infile.fail())

{

......... (process the file)

.........

}
if (infile.eof())

{

......... (terminate program normally)

}

else

if(infile.bad ())

{

.......... (report fatal error)

}

else

{

infile.clear (); // clear error state

.........

}

..........

..........

Summary

• _____ function is used to open multiple files that use the
same stream object.

• The second argument to the open() is _______.

• The default values for opening a file with input and output
stream are ______ and _______.

• Each file is associated with two pointers ____ and ______.

• _____ and _____ functions write and read blocks of binary
data.

• The ios class supports many _______ for managing errors
that may occur during file operations.

• A steam may be connected to more than one file at a time.
(True / False)

• The fin.fail() call returns non-zero when an operation on the
file has failed. (True / False)

Short Answer Questions

• What are the steps involved in using a file in a
C++ program?

▫ The steps involved in using a file are:

 Opening a File

 Perform Read and Write to a file.

 Closing a file.

• Describe the various classes available for file
operations?

▫ fstream, ifstream and ofstream are the classes
available for file operations.

Short Answer Questions

• What is the difference between opening a file with a
constructor function and opening a file with open()
function? When is one method preferred over the other?

▫ When a file is opened using constructor the filename is
passed to initialize the respective file stream class
object whereas with open() function the file stream
object is created and the filename is passed as an
argument to the open() function.

▫ Constructor method is used when there is only one file
in the stream while the open() is used to manage
multiple files using one stream.

Short Answer Questions

• What is a file mode? Describe the various file
mode options available.
▫ File mode specifies the purpose for which the file is opened.

▫ File mode parameters:

 ios::app //Append to end-of-file

 ios::ate //go to end-of-file on opening

 ios::binary //Binary file

 ios::in //open file for reading only

 ios::nocreate //open fails if the file does not exists.

 ios::noreplace //open fails if the file already exists.

 ios::out //open file for writing only

 ios::trunc //delete the contents of file if it exists

Short Answer Questions

• Both ios::ate and ios::app place the file pointer
at the end of the file. What then is the difference
between them?

▫ ios::app allows user to add data to end-of-file only
while ios::ate mode permits to add data anywhere
in the file.

• What does current position mean when applied
to files?

▫ Current position represent the number of bytes in
the file.

Short Answer Questions

• What are the advantages of saving data in binary
form?

▫ Saving data in binary form has following
advantages:

 The values are stored in the same format in which
they are stored in the internal memory.

 As there is no conversions while saving the data, it
is much faster.

• Describe how would we determine number of objects
in a file.

▫ The total number of objects in a file can be obtained
by using object length as:

int n = file_size / obj_len;

Short Answer Questions

• Describe the various approaches by which we
can detect the end-of-file condition successfully.

▫ Various approaches which are used to detect end-
of-file are:

 while(fin)

 An ifstream object return a value zero if any error occurs
in the file operation including the end-of-file condition.

 if(fin1.eof() != 0) { exit(1); }

 The eof() of ios class returns a non zero value if the end-
of-file condition is encountered and zero otherwise.

References

• Object Oriented Programming with C++ by E.
Balagurusamy.

END OF UNIT

