
Contents

 Errors and Exception

 Exception Handling Mechanism

 Try, Throw and Catch

 Re-throwing an Exception

 Specifying Exceptions

Quiz 1

 What is an error?
 An error is a term used to describe any issue that arises

unexpectedly and results in incorrect output.
 What are the different types of errors?

 Logical error:
 Occur due to poor understanding of problem or solution

procedure.
 Syntactic error:

 Arise due to poor understanding of the language itself.

 What is an exception?
 Exceptions are run time anomalies or unusual conditions

that a program may encounter while executing.

Exception Handling

 Exceptions are of two types:
 Synchronous exceptions

 The exceptions which occur during the program
execution due to some fault in the input data are known
as synchronous exceptions.

 For example: errors such as out of range, overflow,
underflow.

 Asynchronous exceptions.
 The exceptions caused by events or faults unrelated

(external) to the program and beyond the control of the
program are called asynchronous exceptions.

 For example: errors such as keyboard interrupts,
hardware malfunctions, disk failure.

Exception Handling Mechanism

 Exception handling mechanism provides a
means to detect and report an exception
circumstances.
 Find the problem (Hit the exception)
 Inform that an error has occurred (Throw the

exception)
 Receive the error information (Catch the

exception)
 Take corrective actions (Handle the

exception)
 The error handling consists of two segments

one to detect and throw exceptions and the
other to catch and take appropriate actions.

Exception Handling Mechanism

 The exception handling mechanism is built
upon three keywords:
 Try

 Is used to preface a block of statements which may
generate exceptions.

 Throw
 When an exception is detected, it is thrown using a

throw statement in the try block.
 Catch

 A catch block defined by the keyword catch catches
the exception thrown by the throw statement in the try
block and handles it appropriately.

Exception Handling Mechanism

 When the try block throws
an exception the program
control leaves the try block
and enters the catch
statement of the catch
block.

 If the type of object thrown
matches the arg type in the
catch statment the catch
block is executed.

 Otherwise the program is
terminated with the help of
abort() function.

Try block throwing an exception
int main()
{

int a,b;
cout<<“enter the values of a
and b :”;
cin>>a;
cin>>b;
int x = a-b;
try
{
 if(x != 0)
 {
 cout<<“Result (a/x) =“

 << a/x;
 }

else
{

throw(x);
}

}

catch(int i)

{

 cout<<“Exception Caught
: x = “ << x << “\n”;

}

return 0;

}

Exceptions thrown by functions

 Mostly
exceptions are
thrown by
functions that
are invoked from
within the try
blocks.

 The point at
which the throw
is executed is
called the throw
point.

Exceptions thrown by functions

void divide(int x, int y, int z)

{

if((x-y) != 0)

{

int R = z/(x-y);

cout << “Result = “ << R << “\n”;

}

else

{

throw (x-y);

}

}

Exceptions thrown by functions

int main()
{

try
{

divide(10,20,30);
divide(10,10,20);

}
catch(int i)
{

cout << “\n Exception caught” ;
}
return 0;

}

Throwing Mechanism

 When an exception is desired to be handled is

detected, it is thrown using the throw statement.

 Throw statement has one of the following forms:

 throw(exception);

 throw exception;

 throw;

 The operand object exception may be of any type,

including constants.

Catching Mechanism
 A catch block looks like a function definition:

catch(type arg)

{

// statements for managing exceptions.

}

 The type indicates the type of exception that catch block

handles.

 The catch statement catches an exception whose type

matches with the type of catch argument.

Multiple Catch Statements

 Multiple catch statements can be associated with a

try block.

 When an exception is thrown, the exception

handlers are searched for an appropriate match.

 The first handler that yields the match is executed.

 After executing the handler, the controls goes to the

first statement after the last catch block for that try.

Multiple Catch Statements

void test(int x)

{

try

{

if (x==1) throw x;

else

if(x==0) throw ‘x’;

else

if(x== -1) throw 1.0;

cout<<“\nEnd of try-block”;

}

}

catch(char c) // catch 1

{

cout<<“\nCaught a character”;

}

catch(int m) // catch 2

{

cout<<“\nCaught an integer”;

}

catch(double d) // catch 3

{

cout<<“\nCaught a double”;

}

cout<<“\n End of try-catch block”;

Multiple Catch Statements

int main()

{

cout<<“\n x = =1”;

test(1);

 cout<<“\n x = = 0”;

test(0);

cout<<“\n x = = -1”;

test(-1);

cout<<“\n x = =2”;

test(2);

return 0;

}

x == 1

Caught an integer

End of try-catch system

x == 0

Caught a character

End of try-catch system

x == -1

Caught a double

End of try-catch system

x == 2

End of try-block

End of try-catch system

Catch all Exceptions

 Sometimes it is not possible to anticipate all
possible types of exceptions and therefore not able
to design independent catch handlers to catch
them.

 A catch statement can also force to catch all
exceptions instead of a certain type alone.

 Syntax:

catch (…)

{

// statements for processing all exceptions.

}

Catch all Exceptions

void test(int x)
{

try
{

if (x==1) throw x;
else
if(x==0) throw ‘x’;
else
if(x== -1) throw 1.0;
cout<<“\nEnd of try-

block”;
}

}
catch(…)
{

cout<<“\n Caught an
exception”;

}

int main()

{

cout<<“\nTesting generic
catch”;

test(1);

 test(0);

test(-1);

test(2);

return 0;

}

Re-throwing an Exception

 A handler can re-throw the exception caught without

processing it.

 This can be done using throw without any arguments.

 Here the current exception is thrown to the next enclosing

try/catch block.

 Every time when an exception is re-thrown it will not be

caught by the same catch statements rather it will be

caught by the catch statements outside the try catch block.

Re-throwing an Exception

void divide(double x, double y)
{
cout<<“Inside Function”;
try
{
 if(y = =0.0)
throw y;
 else
cout<<“Division = “ <<x/y<<“\n”;
}
 catch(double)
{
 cout<<“\nCaught double inside function”;
 throw;
}
cout<<“\n End of function”;

}

int main()
{
cout<<“\n Inside main”;
try
{
divide(10.5, 2.0);
divide(20.0, 0.0);
}
catch(double)
{
cout<<“\n Caught double inside
main”;
}
cout<<“\n End of main”;
return 0;

}

Specifying Exceptions

 It is possible to restrict a function to throw only certain
specified exceptions.

 This is done by adding a throw list clause to the function
definition.

type function(arg-list) throw (type-list)

{

.......

.......

}
 The type-list specifies the type of exceptions that may be

thrown.
 Throwing other type of exceptions cause abnormal termination

of program.

Specifying Exceptions
void test(int x) throw (int, double)
{
if (x==0) throw ‘x’;
else
if(x==1) throw x;
else
if(x== -1) throw 1.0;
cout<<“\n End of function block”;

}
int main()
{
try
{
cout<<“\nTesting throw restrictions”;
cout<<“\n x==0”;
test(0);
cout<<“\n x==1”;
test(1);
cout<<“\n x== -1”;
test(-1);
cout<<“\n x== 2”;
test(2);
}

Catch(char c)
{

cout<<“\n Caught a character”;
}

Catch(int m)
{

cout<<“\n Caught a integer”;
}

Catch(double d)
{

cout<<“\n Caught a double”;
}

Cout<<“\n End of try catch block”;

return 0;

}

Summary
 ______ are peculiar problems that a program may encounter at run

time.

 Exceptions are of two types _____ and ______.

 An exception is caused by a faulty statement in ____ block, which is

caught by _____ block.

 We can place two or more catch blocks to catch and handle multiple

types of exceptions. (True/ False).

 It is also possible to make a catch statement to catch all types of

exception. (True/ False)

 We cannot restrict a function to throw a specified exceptions. (True /

False)

 ______ is used to re-throw an exception.

Short Answer Questions

 What is an exception?
 Exceptions are run time anomalies or unusual conditions

that a program may encounter while executing.
 How is exception handled in C++?

 In C++ the exception is handled using the three
keywords try, throw and catch. Or try-catch mechanism.

 What are the advantages of using exception
handling mechanism in a program?
 The purpose of exception handling mechanism is to

provide a means to detect and report an exceptional
circumstances so that appropriate action can be taken
and prevent abnormal termination of program.

Short Answer Questions

 When should a program throw an exception?
 There are some situation when a program come across

unexpected errors and cause abnormal termination of
program. To handle such errors and prevent program
from termination exceptions are thrown and handled.

 What should be placed inside the try block?
 The statement that may generate an exception are

placed in the try block.
 When do we use multiple catch handlers?

 Multiple catch handlers are used in a situation where a
program has more than one condition to throw and
exception.

Short Answer Questions

 Explain under what circumstances the
following statements would be used:
 throw;

 Re-throwing an exception.
 void fun1(float x) throw()

 Prevent a function from throwing any exception.
 catch(...)

 Used to catch all types of exceptions.

References

 Object Oriented Programming with C++ by E.
Balagurusamy.

INTRODUCTION

 Template enable us to define generic

classes and functions and thus provides

support for generic programming.

 Generic programming is an approach

where generic types are used as

parameters in algorithms so that they

work for a variety of data types.

INTRODUCTION

 A template can be used to create a family of

classes or functions.

 For eg: a class template for an array class

would enable us to create arrays of various data

types such as: int, float etc.

 Templates are also known as parameterized

classes or functions.

 Template is a simple process to create a generic

class with an anonymous type.

Class Templates

 The class template definition is very similar to

an ordinary class definition except the prefix

template <class T> and the use of type T.

 A class created from class template is called a

template class.

 Syntax:

 classname<type> objectname(arglist)

 The process of creating a specific class from a

class template is called instantiation.

Class Templates

 General format of class template is:

template <class T>

class classname

{

//…………..

//class member specification with

//anonymous type T wherever appropriate

//…….

};

Class Templates (Example)
class vector
{

int *v;
int size;
public:

vector (int m)
{

v= new int [size = m];
for(int i=0; i<size; i++)

v[i]=0;
}
vector (int * a)
{
for(int i=0; i<size; i++)

v[i]=a[i];
}
int operator * (vector &y)
{

int sum=0;
for (int i=0; i<size; i++)

sum += this -> v[i] * y . v[i];
return sum;

}
}

int main()
{

int x[3] = {1,2,3};
int y[3]= {4,5,6};

vector v1(3);
vector v2(3);

v1 = x ;
v2 = y ;

int R = v1 * v2 ;
cout<< “ R = “ << R ;

return 0;
}

Class Templates (Example)
const size = 3;
template<class T>
class vector
{

T * v;
public:

vector()
{

v=new T[size];
for(int i=0; i<size; i++)

v[i] = 0;
}
vector(T * a)
{

for(int i=0; i<size; i++)
v[i] = a[i] ;

}

T operator * (vector & y)

{

T sum = 0;

for(int i=0; i<size; i++)

{

sum += this->v[i] * y. v[i];

}

return sum;

}

}

Class Templates (Example)

int main()

{

int x[3] = {1,2,3};

int y[3] = {4,5,6};

vector <int> V1;

vector <int> V2;

V1 = x;

V2 = y;

int R = V1 * V2;

cout << “R = “ << R;

return 0;

}

Class Templates with Multiple Parameters

 We can use more than one generic data
type in a class template.

 Syntax:

template <class T1, class T2>

class classname

{

………

………

………

};

Class Templates with Multiple Parameters
template<class T1, class T2>

class Test

{

T1 a;

T2 b;

public:

Test(T1 x, T2 y)

{

a = x;

b = y;

}

void show()

{

cout<<a;

cout<<b;

}

};

int main()
{

Test <float, int> test1(1.23,123);
Test <int, char> test2(100,’W’);

test1.show();
test2.show();

return 0;

}

Output:
1.23
123
100
W

Function Templates

 Function templates are used to create a
family of functions with different
argument types.

 Syntax:

template <class T>

returntype functionname (arguments of type T)

{

………..

………..

}

Function Template

Template <class T>

void swap (T &x, T &y)

{

T temp = x;

x = y;

y = temp;

}

void fun(int m, int n,
float a, float b)

{
swap(m, n);
swap(a, b);

}

int main()
{

fun(100, 200, 11.22, 33.44);

return 0;

}

Function Template with Multiple

Parameters

 We can have more than one generic
data type in the function template.

template < class T1, class T2>

returntype functionname(arguments of type T1, T2…)

{

…….. (Body of function)

………

}

Function Template with Multiple

Parameters

template <class T1, class T2>

void display(T1 x, T2 y)

{

cout<<x <<“ “ << y << “\n”;

}

int main()

{

display(1999, “XYZ”);

display (12.34, 1234);

return 0;

}

Overloading of Template Functions

 A template function may be overloaded either

by template functions or ordinary functions of

its name.

 The overloading is accomplished as follows:

 Call an ordinary function that has an exact match.

 Call a template function that could be created with an

exact match.

 Try normal overloading to ordinary function and call

the one that matches.

Overloading of Template Functions
template < class T>
void display(T x)
{

cout<<“Template Display : “ << x << “\n”;
}
void display(int x)
{

cout << “Explicit Display: “ << x << “\n”;
}
int main()
{

display(100);
display(12.34);
display(‘C’);
return 0;

}

Member Function Template

 Member functions of the template classes themselves

are parameterized by the type argument.

 Thus, member functions must be defined by the

function templates.

 Syntax:

Template <class T>

returntype classname <T> :: functionname(arglist)

{

…….. // function body

……..

}

Member Function Template

(Example)

template<class T>

class vector

{

T *v;

int size;

public:

vector(int m);

vector(T * a);

T operator *(vector & y);

};

Member Function Template

(Example)
//member function templates….

template <class T>

vector<T> :: vector(int m)

{

v = new T[size = m];

for(int i=0; i<size; i++)

v[i] = 0;

}

template <class T>

vector<T> :: vector(T * a)

{

for(int i=0; i<size; i++)

v[i] = a[i];

}

template <class T>

T vector<T> :: operator * (vector &y)

{

T sum = 0;

for (int i=0; i<size; i++)

sum += this -> v[i] * y.v[i];

return sum;

}

Non-Type Template Arguments

 It is also possible to use non-type arguments.

 In addition to the type argument T, we can
also use other arguments such as strings, int,
float, built-in types.

 Example:

template <class T, int size>

class array

{

T a[size];

……..

………

};

Non-Type Template Arguments

 This template supplies the size of the array as an

argument.

 The argument must be specified whenever a

template class is created.

 Example:

 array <int, 10> a1; // Array of 10 integers

 array <float, 5> a2; // Array of 5 floats

 array <char, 20> a3; // String of size 20

Summary

 C++ supports template to implement the
concept of ______.

 _____ allows to generate a family of classes
or functions to handle different data types.

 A specific class created from a class template
is called ________.

 The process of creating a template class is
known as ________.

 Like other functions, template functions can
be overloaded. (True/False)

 Non-type parameters can also be used as an
arguments templates. (True/False)

Short Answer Questions

 What is generic programming? How it is
implemented in C++?

 Generic programming is an approach where
generic types are used as parameters in
algorithms so that they work for a variety of
data types.

 Generic programming is implemented using the
templates in C++.

 A template can be considered as a kind of
macro. Then, what is the difference between
them.

 Macros are not type safe, that is a macro
defined for integer operations cannot accept
float data.

Short Answer Questions

 Distinguish between overloaded functions

and function templates.

 Function templates involve telling a function

that it will be receiving a specified data type

and then it will work with that at compile time.

 The difference with this and function

overloading is that function overloading can

define multiple behaviours of function with the

same name and multiple/various inputs.

Short Answer Questions

 Distinguish between class template

and template class.

 Class template is generic class for

different types of objects. Basically it

provides a specification for

generating classes based on

parameters.

 Template classes are those classes that

are defined using a class template.

Short Answer Questions

 A class template is known as a

parameterized class. Comment.

 As template is defined with a

parameter that would be replaced by a

specified data type at the time of actual

use of class it is also known as

parameterized class.

Short Answer Questions

 Write a function template for finding the
minimum value contained in an array.

template <class T>

T findMin(T arr[],int n)

{

int i;

T min;

min=arr[0];

for(i=0;i<n;i++)

{

if(min > arr[i])

min=arr[i];

}

return(min);

}

Example Program

References

 Object Oriented Programming with
C++ by E. Balagurusamy.

END OF UNIT ….

	Contents
	Quiz 1
	Exception Handling
	Exception Handling Mechanism
	Exception Handling Mechanism
	Exception Handling Mechanism
	Try block throwing an exception
	Exceptions thrown by functions
	Exceptions thrown by functions
	Exceptions thrown by functions
	Throwing Mechanism
	Catching Mechanism
	Multiple Catch Statements
	Multiple Catch Statements
	Multiple Catch Statements
	Catch all Exceptions
	Catch all Exceptions
	Re-throwing an Exception
	Re-throwing an Exception
	Specifying Exceptions
	Specifying Exceptions
	Summary
	Short Answer Questions
	Short Answer Questions
	Short Answer Questions
	References

