
Department of Computer Engineering

Unit 3
Java as Object Oriented Programming Language-Overview

Fundamentals of JAVA, Arrays: one dimensional array, multi-dimensional array, alternative array

declaration statements ,String Handling: String class methods

Classes and Methods: class fundamentals, declaring objects, assigning object reference variables,

adding methods to a class, returning a value, constructors, this keyword, garbage collection, finalize()

method,

overloading methods, argument passing, object as parameter, returning objects, access control, static,

final, nested and inner classes, command line arguments, variable -length arguments.

Department of Computer Engineering

Topic Book To Refer

Fundamentals of JAVA, Arrays: one dimensional

array, multi-dimensional array, alternative array

declaration statements ,String Handling: String class

methods

Classes and Methods: class fundamentals, declaring

objects, assigning object reference variables, adding

methods to a class, returning a value, constructors,

this keyword, garbage collection, finalize() method,

overloading methods, argument passing, object as

parameter, returning objects, access control, static,

final, nested and inner classes, command line

arguments, variable -length arguments.

Herbert Schildt, "The Complete Reference
Java", 9th Ed, TMH,ISBN: 978-0-07-180856-

9.

Programming With Java, 3rd Edition, E.
Balaguruswamy

Department of Computer Engineering

Topic Book To Refer

String Handling: String class methods

Classes and Methods: class fundamentals, declaring

objects, assigning object reference variables, adding

methods to a class, returning a value, constructors,

this keyword, garbage collection, finalize() method,

overloading methods, argument passing, object as

parameter, returning objects, access control, static,

final, nested and inner classes, command line

arguments, variable -length arguments.

Herbert Schildt, "The Complete Reference
Java", 9th Ed, TMH,ISBN: 978-0-07-180856-

9.

Department of Computer Engineering

Topic Book To Refer

String Handling: String class methods Herbert Schildt, "The Complete Reference
Java", 9th Ed, TMH,ISBN: 978-0-07-180856-

9.
Page No- 413-431

Introduction to JAVA Programming

What is Java?

Java is a programming language and a platform. Java is a high level,

robust, object-oriented and secure programming language.

History of Java

Java was developed by Sun Microsystems (which is now the subsidiary of Oracle) in the year 1995.

James Gosling is known as the father of Java. Before Java, its name was Oak. Since Oak was

already a registered company, so James Gosling and his team changed the Oak name to Java.

Platform: Any hardware or software environment in which a program runs, is known as a

platform. Since Java has a runtime environment (JRE) and API, it is called a platform.

Java Version History

Evolution
Of

Java
JD

K
Al

ph
a

&
 B

et
a

JD
K

1.
0

JD
K

1.
1

J2
SE

 1
.2

J2
SE

 1
.3

J2
SE

 1
.4

J2
SE

 5
.0

Ja
va

 S
E

6

Ja
va

 S
E

7

Ja
va

 S
E

8

Java SE 9

1995 1996 1997 1998 2000 2002 2004 2006 2011
2014

Features of Java

Features of Java

Java is Simple

● It is free from pointer due to this execution time of application is improved.

[Whenever we write a Java program without pointers then internally it is

converted into the equivalent pointer program].

● It has Rich set of API (application protocol interface).

● It has Automatic Garbage Collector which is always used to collect un-

Referenced (unused) Memory location for improving performance of a Java

program.

● It contains user friendly syntax for developing any applications.

JAVA Compiler and Interpreter

Java Life Cycle
Java Programs Normally Undergo Four Phases

Edit Compile
Load

ExecuteProgrammer
Writes

program
Compiler creates
Byte-codes from

program Class loader stores
Byte-codes in memory

Translate byte codes
Into machine language

The execution lifecycle of a Java application can be broadly divided into

three phases:

1.Compilation: The source code of the application is converted into bytecode

using the “javac” compiler.

2.Class Loading: The bytecode is loaded into memory and the necessary

class files are prepared for execution.

3. Bytecode Execution: The JVM executes the bytecode and the program

runs.

1. Java Bytecode is the intermediate representation of your Java code that is

executed by the Java Virtual Machine (JVM).

2. When you compile a Java program, the Java compiler (javac) converts

your code into bytecode, which is a set of instructions that the JVM can

understand and execute.

 3.This bytecode is platform-independent, meaning the same Java program

can run on different devices and operating systems, a principle known as

"write once, run anywhere" (WORA).

Java is Object Oriented

● Since it is an object-oriented language, it will support the following features:

○ Class

○ Object

○ Encapsulation

○ Abstraction

○ Inheritance

○ Polymorphism

Java is Platform Independent

1. Java is platform-independent because it uses a virtual machine.

2. The Java programming language and all APIs are compiled into

bytecodes.

3. Bytecodes are effectively platform-independent. The virtual

machine takes care of the differences between the bytecodes for the

different platforms

JVM, JDK ,JRE

Difference between JDK, JRE and JVM

Java Development Kit

JDK is an acronym
for Java Development

Kit. It physically
exists. It contains JRE
+ development tools.

Java Runtime Environment

JRE is used to
provide runtime

environment. It is
the implementation
of JVM. It physically

exists.

Java Virtual Machine

JVM is an abstract
machine. It is a

specification that
provides runtime

environment in which
java bytecode can be

executed.

JDK

JDK is a software development kit whereas JRE is a software bundle that allows Java program
to run, whereas JVM is an environment for executing bytecode.

Let’s look at some of the important differences between JDK, JRE, and JVM.

1.JDK is for development purpose whereas JRE is for running the java programs.

2.JDK and JRE both contains JVM so that we can run our java program.

3.JVM is the heart of java programming language and provides platform

independence.

The JIT compiler helps improve the performance of Java programs by compiling bytecodes into native machine code at
run time. The JIT compiler is enabled by default. When a method has been compiled, the JVM calls the compiled code
of that method directly instead of interpreting it.
Difference between JVM & JIT
**Java Virtual Machine is an interpreter that converts the bytecode into the machine's native language, whereas JIT
(Just In Time) is responsible for improving the environment of Java.

Java is Secure

Java is Secure

Java is Robust

● Capable of handling run-time errors,

● Supports automatic garbage collection

● Exception handling, and

● Avoids explicit pointer concept.

Java is Architecture Neutral

Java is Architecture Interpreted

Java is Multithreading

Java is Multithreading

● Multithreaded means handling multiple tasks

simultaneously or executing multiple portions (functions)

of the same program in parallel.

● The code of java is divided into smaller parts and Java

executes them in a sequential and timely manner.

Java is Distributed

● Multiple programmers at many locations to work

together on a single project.

● Support RMI (Remote Method Invocation) and EJB (Enterprise

JavaBeans).

● Extensive library of classes for interacting, using TCP/IP

protocols such as HTTP and FTP, which makes creating

network connections much easier than in C/C++.

Java is Distributed

Java is Dynamic

● Classes are not loaded all at once.

● They jump into action only when an invoke operation executes

or some data about the class is needed in the memory.

● Java finalizes invoking instructions during runtime. Ex-

Runtime Polymorphism i.e function overriding.

Java Editions

Java 2 Standard
Edition

Java standard edition
is use to develop

client-side
standalone

applications or
applets

Java 2 Micro Edition

Java micro edition is
use to develop

applications for
mobile devices such

as cell phones

Java 2 Enterprise Edition

Java enterprise
edition is use to

develop server-side
applications such as

Java servlets and Java
Server Pages

J2SE J2ME J2EE

First “Hello World”
program using JAVA

“package sct”
● It is package declaration statement.

● defines a namespace in which classes are stored.

● to organize the classes based on functionality.

● If you omit the package statement, the class names are put into the default package

java.lang, which has no name.

2. “public class HelloWorld”
● This line has various aspects of java programming.

● public: This is access modifier keyword which tells compiler access to class.

Various values of access modifiers can be public, protected,private or default

(no value).

● class:

3. “Comments”

● Line comments: It starts with two forward slashes (//) and

continues to the end of the current line. Line comments do not

require an ending symbol.

● Block comments: start with a forward slash and an asterisk (/*) and

end with an asterisk and a forward slash (*/).Block comments can

also extend

4. “public static void main (String [] args)”:

public: This keyword means that the method is accessible anywhere, including from outside the

class it’s declared in.

static: By using ‘static’, we’re saying that the main method can be run without needing an

instance of the class.

void: This keyword indicates that the main method doesn’t return any value.

main: ‘main’ is the name of this method. The JVM looks for a method with this name when it

starts running a program.

String[] args: This is an array of ‘String’ objects. It’s used to receive any command-line

arguments that were passed when the program was started.

5. System.out.println("Hello World from Java") :

● System: It is the name of Java utility class.

● out:It is an object which belongs to System class.

● println: It is utility method name which is used to send any String to the console.

● “Hello World from Java”: It is String literal set as argument to println method.

ARRAY in JAVA Programming

JAVA: Introduction to Array Data Type

JAVA: Introduction to Array Data Type

● Arrays in Java are homogeneous data structures implemented in Java

as objects.

● Arrays store one or more values of a specific data type and provide

indexed access to store the same.

● A specific element in an array is accessed by its index.

● Arrays offer a convenient means of grouping related information.

JAVA: Introduction to Array Data Type

● Obtaining an array is a two-step process.

○ First, you must declare a variable of the desired array type

○ Second, you must allocate the memory that will hold the array,

using new, and assign it to the array variable

JAVA: General Form of Java Array Initialization

Example:- int month_days[];

JAVA: General Form of Java Array Initialization

JAVA: More About Array Initialization...

JAVA: More About Array Initialization...

JAVA: Implementing an Array

class MyArray{

public static void main(String args[]){

int month_days[] = {31,28,31,30,31,30,31,30,31,30,31};

System.out.println("April has " + month_days[3] + days.");

}

}

OUTPUT
April has 30days

JAVA: Accessing a Specific Element in a Java Array

public static void main(String args[]) {
 int month_days[];
 month_days = new int[12];
 month_days[0] = 31;
 month_days[1] = 28;
 month_days[2] = 31;
 month_days[3] = 30;
 month_days[4] = 31;
 month_days[5] = 30;
 month_days[6] = 31;
 month_days[8] = 30;
 month_days[9] = 31;
 month_days[10] = 30;
 month_days[11] = 31;
 System.out.println("April has " + month_days[3] + " days.");
 }
}

OUTPUT
April has 30days

JAVA: Multidimensional Array

JAVA: Multidimensional Array -Conceptually

class TwoDArray
{
 //---
 // Creates a 2D array of integers, fills it with increasing
 // integer values, then prints them out.
 //---
 public static void main (String[] args)
 {
 int[][] multarry = new int[4][5];
 int i,j,k=0;

 // Load the table with values
 for (i=0; i < 4;i++)
 for (j=0; j < 5; j++)
 {
 multarry[i][j]=k;
 k++;
 }

// Print the table
 for (i=0; i < 4;i++)
 {
 for (j=0; j < 5; j++)
 {
 System.out.print(multarry[i][j]+" ");
 }

 System.out.println();

 }
 }
}

OUTPUT
0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19

JAVA: Multidimensional arrays representation of different data types.

JAVA: Multidimensional arrays representation of different data types.

Array Vs ArrayList

Array Vs ArrayList

JAVA: Passing Java Array to a Method

class PMethods{
public static void display(int y[])
 {
 System.out.println(y[0]);
 System.out.println(y[1]);
 System.out.println(y[2]);

 }
public static void main(String args[])
 {
 int x[] = { 1, 2, 3 };
 display(x); //Passed array x to method display
 }
}

OUTPUT
1
2
3

Click Here

Java Interview Questions on Array

https://javaconceptoftheday.com/java-array-interview-questions-and-answers/

Memory Allocation

and

Java Garbage Collection

Java Heap Space

● Used by Java runtime to allocate memory to Objects and JRE classes.

● Any new Object is always created in Heap Space.

● Garbage Collection runs on the heap memory to free the memory

used by objects that doesn’t have any reference.

● All instance and class variables are also stored in the heap.

Java Stack Memory
● Used for execution of a thread.

● Store method specific values, and “references” to Objects being used in the method.

● Stack memory is LIFO (Last-In-First-Out)

● Whenever a method is invoked, a new block is created in the stack memory for the

method to hold local primitive values and reference to other objects in the method.

As soon as method ends, the block becomes unused and become available for

next method.

● Stack memory size is very less compared to Heap memory.

Page 4

Page 4

String Handling in Java

Creating String in Java
There are two ways to create a String in Java
• String literal

• Using “new” keyword

Does it make any difference? Well, yes!

String Pool Concept in Java (String
Interning)

String Intern Pool maintained in Java Heap Space

Discussion: How many Strings are getting created
here?

String is Immutable in Java

String s1 = "Sky";

String s2 = "Blue"

String is Immutable in Java

s1 = s1 + s2;

String Pool Concept in Java (String Interning)
● String is immutable in Java
● All Strings are stored in String Pool (also called String Intern Pool) allocated

within Java Heap Space
● It is implementation of String Interning Concept.
● String interning is a method of storing only one copy of each distinct string

value, which must be immutable.
● Interning strings makes some string processing tasks more time- or space-

efficient at the cost of requiring more time when the string is created or
interned.

● The distinct values are stored in a string intern pool.
● Using new operator, we force String class to create a new String object in heap

space.

String Pool Concept in Java (String Interning)

public class InternExample{

public static void main(String args[]){

String s1=new String("hello");

String s2="hello";

String s3=s1.intern(); //returns string from pool, now it will be same as s2

System.out.println(s1==s2);//false because reference variables are pointing to different instance

System.out.println(s2==s3);//true because reference variables are pointing to same instance

}}

java.lang.String API – Important
methods

java.lang.String API – Important
methods

java.lang.String API – Examples

java.lang.String API – Examples
public class EqualsSample{
 public static void main(String args[]){
 String s1="string";
 String s2="string";
 String s3="swing";

String s4= “ ABC ”;

 System.out.println(s1.equals(s2)); // true because both
are equal

 System.out.println(s1.equals(s3)); //false because both
are not equal

java.lang.String API – Examples

 System.out.println(s1.length()); // 5 is the length of s1

 System.out.println(s1.compareTo(s2)); //0 as both are equal

 System.out.println(s1.compareTo(s3)); //-3 as ‘t’ in s1 is less than
‘w’ in s2

 System.out.println(s4.trim() +":wordpress.com");
//ABC.wordpress.com

 System.out.println(s1.concat(s4)); //string ABC

 System.out.println(s1.toUpperCase()); //STRING
 }
}

java.lang.String API – Examples

 System.out.println(s1.charAt(4)); // n

 }
}

Converting String to numbers and vice
versa

● String to Number

○ int i = Integer.parseInt(str);

○ Integer i = Integer.valueOf(str);

○ double d = Double.parseDouble(str);

○ Double d = Double.valueOf(str);

Note: Both throw NumberFormatException If the String is not valid for

conversion

Converting String to numbers and vice
versa

● String to Boolean

○ boolean b = Boolean.parseBoolean(str);

● Any Type to String

○ String s = String.valueOf(value);

Click Here

Java Interview Questions on String

https://javaconceptoftheday.com/java-string-interview-questions-and-answers/

Classes and Method

● Core of Java.

● Logical construct upon which the entire Java language is built

● Defines the shape and nature of and object.

Class Fundamentals
● A class is that it defines a new data type.

● Once defined, this new type can be used to create objects of that type.

● A class is a template for an object, and an object is an instance of a

class. Because an object is an instance of a class

● Two word object and instance used interchangeably.

The General Form of a Class
● The data that it contains

and the code that

operates on that data

The General Form of a Class
● The data that it contains and the code that operates on that data

● The data, or variables, defined within a class are called instance

variables

● The code is contained within methods

● Collectively, the methods and variables defined within a class are

called members of the class.

The General Form of a Class
● Variables defined within a class are called instance variables

because each instance of the class (that is, each object of the class)

contains its own copy of these variables.

● Thus, the data for one object is separate and unique from the data for

another.

The General Form of a Class
● All methods have the same general form as main().

● However, most methods will not be specified as static or public

● the general form of a class does not specify a main() method.

● Java classes do not need to have main() method. You only specify one if

that class is the starting point for your program.

● Further ,some kinds of Java applications, such as applets, don’t

require a main() method at all.

A Simple Class

Declaring Objects
● Obtaining objects of a class is a two-step process.

● First, you must declare a variable of the class type. This variable does

not define an object. Instead,it is simply a variable that can refer to an

object.

● Second, you must acquire an actual, physical copy

Declaring Objects
● The new operator dynamically allocates (that is, allocates at run

time) memory for an object and returns a reference to it.

● This reference is, more or less, the address in memory of the object

allocated by new

● This reference is then stored in the variable. Thus, in Java, all class

objects must be dynamically allocated.

A Closer Look at new
● The new operator dynamically allocates (that is, allocates at run

time) memory for an object.

● It has this general form:

class-var = new classname ();

A Closer Look at new
● The class name followed by parentheses specifies the constructor for

the class.

● A constructor defines what occurs when an object of a class is created.

● Constructors are an important part of all classes and have many

significant attributes.

● Most real-world classes explicitly define their own constructors within

their class definition.

A Closer Look at new
● if no explicit constructor is specified, then Java will automatically supply a default

constructor

● Java’s primitive types are not implemented as objects. Rather, they are implemented as

“normal” variables.

● Advantage of new : program can create as many or as few objects as it needs during

the execution of your program.

● memory is finite, it is possible that new will not be able to allocate memory for an object

because insufficient memory exists.

● If this happens, a run-time exception will occur.

Assigning Object Reference Variables

Assigning Object Reference Variables

Assigning Object Reference Variables
REMEMBER

When you assign one object reference variable to another

object reference variable, you are not creating a copy of the

object, you are only making a copy of the reference.

Introducing Methods
general form of a method:

Adding a Method to the Class

● In fact, methods define the interface to most classes. This allows the

class implementor to hide the specific layout of internal data

structures behind cleaner method abstractions.

● In addition to defining methods that provide access to data,you can

also define methods that are used internally by the class itself.

Adding a Method to the Class

● The instance variables width, height, and depth are referred to

directly,

● without preceding them with an object name or the dot operator.

● When an instance variable is accessed by code that is not part of the

class in which that instance variable is defined, it must be done through

an object, by use of the dot operator.

Returning a Value

● The type of data returned by a method must be compatible with the

return type specified by the method.

● For example, if the return type of some method is boolean , you could not

return an integer.

● The variable receiving the value returned by a method (such as vol

 in this case) must also be compatible with the return type specified for

the method

Returning a Value

Adding a Method That Takes
Parameters

Returning a Value

● A parameter is a variable defined by a method that receives a value

when the method is called.

● For example, in square() , i is a parameter.

● An argument is a value that is passed to a method when it is invoked.

For example, square(100) passes 100 as an argument.

● Inside square() , the parameter i receives that value.

Modified program using parameterized methods

Constructor

● A constructor initializes an object immediately upon creation.

● It has the same name as the class in which it resides and is syntactically

similar to a method.

● Once defined, the constructor is automatically called when the object is

created, before the new operator completes.

Constructor

Constructor
● The default constructor automatically initializes all instance variables to

their default values,

○ which are zero for numeric types,

○ null for reference types ,

○ and false for boolean

● The default constructor is often sufficient for simple classes, but it usually

won’t do for more sophisticated ones.

● Once you define your own constructor, the default constructor is no

longer used.

Parameterized Constructor

The this Keyword

The this Keyword The this Keyword
and Instance

Variable Hiding

The this Keyword
● Sometimes a method will need to refer to the object that invoked it. To allow

this, Java defines the this keyword.

● This can be used inside any method to refer to the current object.

● That is, this is always a reference to the object on which the method was

invoked.

● You can use this any where a reference to an object of the current class’

type is permitted.

 Instance Variable Hiding
● Java to declare two local variables with the same name inside the same or

enclosing scopes.

● Interestingly, you can have local variables, including formal parameters

to methods, which overlap with the names of the class’ instance variables.

● Because this lets you refer directly to the object, you can use it to resolve any

namespace collisions that might occur between instance variables and local

variables.

The this Keyword and Instance Variable
Hiding

● The use of this in such a context can sometimes be confusing, and some

programmers are careful not to use local variables and formal parameter

names that hide instance variables.

● Of course,other programmers believe the contrary—that it is a good

convention to use the same names for clarity, and use this to overcome

the instance variable hiding.

● It is a matter of taste which approach you adopt.

Garbage Collection

● It is automatic deallocation.

● when no references to an object exist, that object is assumed to be no longer needed,

and the memory occupied by the object can be reclaimed.

● There is no explicit need to destroy objects as in C++.

● only occurs sporadically (ifat all) during the execution of your program.

● It will not occur simply because one or more objects exist that are no longer used.

● different Java run-time implementations will take varying approaches to garbage

collection, but for the most part, you should not have to think about it while

writing your programs.

The finalize() Method

● Sometimes an object will need to perform some action when it is

destroyed.

● For example, if an object is holding some non-Java resource such as a file

handle or character font, then you might want to make sure these resources

are freed before an object is destroyed.

● To handle such situations, Java provides a mechanism called finalization

● you can define specific actions that will occur when an object is just

about to be reclaimed by the garbage collector.

The finalize() Method

● To add a finalizer to a class, you simply define the finalize() Method.

● The Java run time calls that method whenever it is about to recycle an object

of that class.

● Inside the finalize() method, you will specify thos eactions that must be

performed before an object is destroyed.

The finalize() Method

● It is important to understand that finalize() is only called just prior to

garbage collection.

● It is not called when an object goes out-of-scope

● For example. This means that you cannot know when—or even if—finalize()

will be executed. Therefore, your program should provide other means of

releasing system resources, etc., used by the object.

● It must not rely on finalize() for normal program operation

Polymorphism in Java

● The process of representing one form in multiple forms is known as

Polymorphism.

● Polymorphism is derived from 2 greek words: poly and morphs.

● The word "poly" means many and "morphs" means forms. So

polymorphism means many forms.

Department of Computer Engineering

Unit 3
Java as Object Oriented Programming Language-Overview

Fundamentals of JAVA, Arrays: one dimensional array, multi-dimensional array, alternative

array declaration statements ,String Handling: String class methods

Classes and Methods: class fundamentals, declaring objects, assigning object reference

variables, adding methods to a class, returning a value, constructors, this keyword, garbage

collection, finalize() method,

overloading methods, argument passing, object as parameter, returning objects, access

control, static, final, nested and inner classes, command line arguments, variable -length

arguments.

Polymorphism in Java

Polymorphism in Java

Polymorphism in Java

Method Overloading

● In Java it is possible to define two or more methods within the same

class that share the same name, as long as their parameter

declarations are different

● When an overloaded method is invoked, Java uses the type and/or

number of arguments as its guide to determine which version of the

overloaded method to actually call

● The return type alone is insufficient to distinguish two versions of a

method.

Method Overloading

Method Overloading

Method Overloading

Method Overloading and automatic
Type Promotion

● In some cases Java’s automatic type conversions can

play a role in overload resolution

● Java will employ its automatic type conversions only if

no exact match is found

Method Overloading and automatic
Type Promotion

Method Overloading and automatic
Type Promotion

Constructor Overloading

Constructor Overloading

● Java Constructor overloading is a technique in which a class

can have any number of constructors that differ in

parameter list.

● The compiler differentiates these constructors by taking into

account the number of parameters in the list and their

type.

Constructor Overloading

Objects as Parameters

Copy constructor

A closer look at argument Passing
There are two ways that a computer language can pass an
argument to a subroutine

● Call by value
● Call by reference

A closer look at argument Passing

A closer look at argument Passing

Call by Value : When a primitive type is passed to a method

Call by Reference : objects are implicitly passed to a method

Returning Objects

Department of Computer Engineering

Unit 3
Java as Object Oriented Programming Language-Overview

Fundamentals of JAVA, Arrays: one dimensional array, multi-dimensional array, alternative

array declaration statements ,String Handling: String class methods

Classes and Methods: class fundamentals, declaring objects, assigning object reference

variables, adding methods to a class, returning a value, constructors, this keyword, garbage

collection, finalize() method,

overloading methods, argument passing, object as parameter, returning objects, access

control, static, final, nested and inner classes, command line arguments, variable -length

arguments.

Recursion

● Java supports recursion

● Recursion is the process of defining something in terms

of itself

● As it relates to Java programming, recursion is the

attribute that allows a method to call itself

● A method that calls itself is said to be recursive

Recursion
● Recursive versions of many routines may execute a bit more slowly

than the iterative equivalent because of the added overhead of the

additional function calls

● Because storage for parameters and local variables is on the stack

and each new call creates a new copy of these variables, it is

possible that the stack could be exhausted

● If this occurs, the Java run-time system will cause an exception

Recursion
● The main advantage to recursive methods is that they can be used to

create clearer and simpler versions of several algorithms than

can their iterative relatives

Recursion

Introducing Access Control
● Java’s access specifiers are public, private, and protected

● protected applies only when inheritance is involved

● When a member of a class is modified by the public specifier,

then that member can be accessed by any other code

● When a member of a class is specified as private, then that

member can only be accessed by other members of its class

Introducing Access Control

Introducing Access Control
● Java’s access specifiers are public, private, and protected

● protected applies only when inheritance is involved

● When a member of a class is modified by the public specifier,

then that member can be accessed by any other code

● When a member of a class is specified as private, then that

member can only be accessed by other members of its class

Introducing Access Control

Understanding static
● When a member is declared static, it can be accessed before any

objects of its class are created, and without reference to any object

● The most common example of a static member is main()

● main() is declared as static because it must be called before any

objects exist

● Instance variables declared as static are, essentially, global

variables

Methods declared as static have several
restrictions:

● They can only call other static methods

● They must only access static data

● They cannot refer to this or super in any way

Methods declared as static have several
restrictions:

● They can only call other static methods

● They must only access static data

● They cannot refer to this or super in any way

● We can declare a static block which gets executed exactly once,

when the class is first loaded

Understanding static

Introducing final
● A variable can be declared as final

● Doing so prevents its contents from being modified

● We must initialize a final variable when it is declared

● final int FILE_NEW = 1;

● final int FILE_OPEN = 2;

Introducing final
● Variables declared as final do not occupy memory on a per-

instance basis

● The keyword final can also be applied to methods, but its

meaning is substantially different than when it is applied to

variables

Introducing Nested and Inner Classes
● It is possible to define a class within another class

● The scope of a nested class is bounded by the scope of its

enclosing class

● If class B is defined within class A, then B is known to A, but not

outside of A

● A nested class has access to the members, including private

members, of the class in which it is nesteD

Introducing Nested and Inner Classes
● However, the enclosing class does not have access to the

members of the nested class

● There are two types of nested classes: static and non-static

● A static nested class is one which has the static modifier applied

● static innerclass must access its enclosing class by creating an

object.

Introducing Nested and Inner Classes
● The most important type of nested class is the inner class

● An inner class is a non-static nested class

● It has access to all of the variables and methods of its outer class

Introducing Nested and Inner Classes
● It is important to realize that class Inner is known only within

the scope of class Outer

● The Java compiler generates an error message if any code

outside of class Outer attempts to instantiate class Inner

Introducing Nested and Inner Classes

Introducing Nested and Inner Classes

Introducing Nested and Inner Classes
● It is important to realize that class Inner is known only within

the scope of class Outer

● The Java compiler generates an error message if any code

outside of class Outer attempts to instantiate class Inner

● While nested classes are not used in most day-to-day programming,

they are particularly helpful when handling events in an applet

Introducing Nested and Inner Classes
● It is important to realize that class Inner is known only within

the scope of class Outer

● The Java compiler generates an error message if any code

outside of class Outer attempts to instantiate class Inner

● While nested classes are not used in most day-to-day programming,

they are particularly helpful when handling events in an applet

Introducing Nested and Inner Classes

Example of Nested Class
class TestMemberOuter1{

 private int data=30;

 class Inner{

 void msg(){System.out.println("data is
"+data);} /)msg() complete

 } // Inner class Complete

 public static void main(String args[]){

 TestMemberOuter1 obj=new TestMemberOuter1();

 TestMemberOuter1.Inner in=obj.new Inner();

 in.msg();

 }

}

Command Line Argument

● The java command-line argument is an argument i.e. passed at

the time of running the java program.

● The arguments passed from the console can be received in the

java program and it can be used as an input.

● So, it provides a convenient way to check the behavior of the

program for the different values. You can pass N (1,2,3 and so

on) numbers of arguments from the command prompt.

Command Line Argument

● When command-line arguments are supplied to JVM, JVM wraps

these and supplies them to args[]. It can be confirmed that they are

actually wrapped up in an args array by checking the length of args

using args.length.

● Internally, JVM wraps up these command-line arguments into the

args[] array that we pass into the main() function. We can check

these arguments using args.length method. JVM stores the first

command-line argument at args[0], the second at args[1], the third

at args[2], and so on.

Using Command-Line Arguments

Program for Command Line argument

Steps to Run COmmand Line Argument

Save the program as Hello.java

Open the command prompt window and compile the program- javac
Hello.java

After a successful compilation of the program, run the following command
by writing the arguments- java Hello

For example – java Hello Geeks at GeeksforGeeks

Press Enter and you will get the desired output.

Command Line Argument

Var args-Variable length Arguments

Variable Arguments
A method with variable length arguments(Varargs) in Java can
have zero or multiple arguments.

Variable length arguments are most useful when the number of
arguments to be passed to the method is not known beforehand.

They also reduce the code as overloaded methods are not
required.

Variable Arguments

public class Demo {

 public static void Varargs(String... str) {

 System.out.println("\nNumber of arguments are: " +
str.length);

 System.out.println("The argument values are: ");

 for (String s : str)

 System.out.println(s);

 }

 public static void main(String
args[]) {

 Varargs("Apple", "Mango",
"Pear");

 Varargs();

 Varargs("Magic");

 }

}

Output

Number of arguments are: 3

The argument values are:

Apple

Mango

Pear

Number of arguments are: 0

The argument values are:

Number of arguments are: 1

The argument values are:

Magic

Variable Arguments

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182

