
Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 1

Fundamentals of JAVA, Arrays: one dimensional array, multi-dimensional array,

alternative array declaration statements,

String Handling: String class methods

Classes and Methods: class fundamentals, declaring objects, assigning object reference

variables, adding methods to a class, returning a value, constructors, this keyword,

garbage collection, finalize() method, overloading methods, argument passing, object as

parameter, returning objects, access control, static, final, nested and inner classes,

command line arguments, variable - length arguments.

Java Class and Objects

Java is an object-oriented programming language. The core concept of the object-oriented

approach is to break complex problems into smaller objects.

An object is any entity that has a state and behavior. For example, a bicycle is an object. It

has

 States: idle, first gear, etc

 Behaviors: braking, accelerating, etc.

Before we learn about objects, let's first know about classes in Java.

Java Class

 A class is a blueprint for the object. Before we create an object, we first need to define the

class.

 We can think of the class as a sketch (prototype) of a house. It contains all the details

about the floors, doors, windows, etc. Based on these descriptions we build the house.

House is the object.

 Since many houses can be made from the same description, we can create many objects

from a class.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 2

Create a class in Java

We can create a class in Java using the class keyword. For example,

class ClassName {

 // fields

 // methods

}

Here, fields (variables) and methods represent the state and behavior of the object

respectively.

 fields are used to store data

 methods are used to perform some operations

For our bicycle object, we can create the class as

class Bicycle {

 // state or field

 private int gear = 5;

 // behavior or method

 public void braking() {

 System.out.println("Working of Braking");

 }

}

 In the above example, we have created a class named Bicycle. It contains a field

named gear and a method named braking().

 Here, Bicycle is a prototype. Now, we can create any number of bicycles using the

prototype. And, all the bicycles will share the fields and methods of the prototype.

https://www.programiz.com/java-programming/variables-literals
https://www.programiz.com/java-programming/methods

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 3

Note: We have used keywords private and public. These are known as access modifiers.

Java Objects:

An object is called an instance of a class. For example, suppose Bicycle is a class

then MountainBicycle, SportsBicycle, TouringBicycle, etc can be considered as objects of

the class.

Creating an Object in Java

Here is how we can create an object of a class.

className object = new className();

// for Bicycle class

Bicycle sportsBicycle = new Bicycle();

Bicycle touringBicycle = new Bicycle();

 We have used the new keyword along with the constructor of the class to create an

object. Constructors are similar to methods and have the same name as the class.

 For example, Bicycle () is the constructor of the Bicycle class.

 Here, sportsBicycle and touringBicycle are the names of objects. We can use them to

access fields and methods of the class.

 As you can see, we have created two objects of the class. We can create multiple

objects of a single class in Java.

Note: Fields and methods of a class are also called members of the class.

Access Members of a Class

We can use the name of objects along with the . operator to access members of a class.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 4

For example,

class Bicycle {

 // field of class

 int gear = 5;

 // method of class

 void braking() {

 ...

 }

}

// create object

Bicycle sportsBicycle = new Bicycle();

// access field and method

sportsBicycle.gear;

sportsBicycle.braking();

In the above example, we have created a class named Bicycle. It includes a field named

gear and a method named braking(). Notice the statement,

Bicycle sportsBicycle = new Bicycle();

Here, we have created an object of Bicycle named sportsBicycle. We then use the object to

access the field and method of the class.

 sportsBicycle.gear - access the field gear

 sportsBicycle.braking() - access the method braking()

Let's see a fully working example.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 5

Example: Java Class and Objects

class Lamp {

 // stores the value for light. true if light is on. false if light is off

 boolean isOn;

 // method to turn on the light

 void turnOn() {

 isOn = true;

 System.out.println("Light on? " + isOn);

 }

 // method to turnoff the light

 void turnOff() {

 isOn = false;

 System.out.println("Light on? " + isOn);

 }

}

class ABC {

 public static void main(String[] args) {

 // create objects led and halogen

 Lamp led = new Lamp();

 Lamp halogen = new Lamp();

 // turn on the light by calling method turnOn()

 led.turnOn();

 // turn off the light by calling method turnOff()

 halogen.turnOff();

 }

}

Output:

Light on? true

Light on? false

In the above program, we have created a class named Lamp. It contains a

variable: isOn and two methods: turnOn() and turnOff().

Inside the Main class, we have created two objects: led and halogen of the Lamp class. We

then used the objects to call the methods of the class.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 6

 led.turnOn() - It sets the isOn variable to true and prints the output.

 halogen.turnOff() - It sets the isOn variable to false and prints the output.

The variable isOn defined inside the class is also called an instance variable. It is because

when we create an object of the class, it is called an instance of the class. And, each

instance will have its own copy of the variable.

That is, led and halogen objects will have their own copy of the isOn variable.

Example: Create objects inside the same class

Note that in the previous example, we have created objects inside another class and

accessed the members from that class.

However, we can also create objects inside the same class.

class Lamp {

 // stores the value for light

 // true if light is on

 // false if light is off

 boolean isOn;

 // method to turn on the light

 void turnOn() {

 isOn = true;

 System.out.println("Light on? " + isOn);

 }

 public static void main(String[] args) {

 // create an object of Lamp

 Lamp led = new Lamp();

 // access method using object

 led.turnOn();

 }

}

Output

Light on? true

Here, we are creating the object inside the main () method of the same class.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 7

What is an object in Java

An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen,

table, car, etc. It can be physical or logical (tangible and intangible). The example of an

intangible object is the banking system.

An object has three characteristics:

o State: represents the data (value) of an object.

o Behavior: represents the behavior (functionality) of an object such as deposit, withdraw, etc.

o Identity: An object identity is typically implemented via a unique ID. The value of the ID is

not visible to the external user. However, it is used internally by the JVM to identify each

object uniquely.

For Example, Pen is an object. Its name is Reynolds; color is white, known as its state. It is

used to write, so writing is its behavior.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 8

An object is an instance of a class. A class is a template or blueprint from which objects

are created. So, an object is the instance (result) of a class.

Object Definitions:

o An object is a real-world entity.

o An object is a runtime entity.

o The object is an entity which has state and behavior.

o The object is an instance of a class.

Object and Class Example: main outside the class

 In real time development, we create classes and use it from another class. It is a better

approach than previous one. Let's see a simple example, where we are having main ()

method in another class.

 We can have multiple classes in different Java files or single Java file. If you define

multiple classes in a single Java source file, it is a good idea to save the file name with

the class name which has main () method.

TestStudent1.java

//Java Program to demonstrate having the main method in another class

//Creating Student class.

class Student{

 int id;

 String name; }

//Creating another class TestStudent1 which contains the main method

class TestStudent1{

 public static void main(String args[]){

 Student s1=new Student();

 System.out.println(s1.id);

 System.out.println(s1.name);

 } }

Output:
0

Null

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 9

3 Ways to initialize object
There are 3 ways to initialize object in Java.

1. By reference variable

2. By method

3. By constructor

1) Object and Class Example: Initialization through reference

Initializing an object means storing data into the object. Let's see a simple example where

we are going to initialize the object through a reference variable.

TestStudent2.java

class Student{

 int id;

 String name;

}

class TestStudent2{

 public static void main(String args[]){

 Student s1=new Student();

 s1.id=101;

 s1.name="Computer";

 System.out.println(s1.id+" "+s1.name);//printing members with a white space

 }

}

Output:

101 Computer

We can also create multiple objects and store information in it through reference variable.

TestStudent3.java

class Student{

 int id;

 String name;

}

class TestStudent3{

 public static void main(String args[]){

 //Creating objects

 Student s1=new Student();

 Student s2=new Student();

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 10

 //Initializing objects

 s1.id=101;

 s1.name="Computer";

 s2.id=102;

 s2.name="Department";

 //Printing data

 System.out.println(s1.id+" "+s1.name);

 System.out.println(s2.id+" "+s2.name);

 }

}

Output:

101 Computer

102 Department

2) Object and Class Example: Initialization through method

In this example, we are creating the two objects of Student class and initializing the value to

these objects by invoking the insertRecord method. Here, we are displaying the state (data)

of the objects by invoking the displayInformation() method.

class Student{

 int rollno;

 String name;

 void insertRecord(int r, String n){

 rollno=r;

 name=n;

 }

 void displayInformation(){System.out.println(rollno+" "+name);}

}

class TestStudent4{

 public static void main(String args[]){

 Student s1=new Student();

 Student s2=new Student();

 s1.insertRecord(111,"Computer");

 s2.insertRecord(222,"Department");

 s1.displayInformation();

 s2.displayInformation(); } }

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 11

Output:

111 Computer

222 Department

The object gets the memory in heap memory area. The reference variable refers to the

object allocated in the heap memory area. Here, s1 and s2 both are reference variables

that refer to the objects allocated in memory.

3) Object and Class Example: Initialization through a constructor:

Object and Class Example: Employee

Let's see an example where we are maintaining records of employees.
TestEmployee.java

class Employee{

 int id;

 String name;

 float salary;

 void insert(int i, String n, float s) {

 id=i;

 name=n;

 salary=s;

 }

 void display(){

 System.out.println(id+" "+name+" "+salary);

} }

public class TestEmployee {

public static void main(String[] args) {

 Employee e1=new Employee();

 Employee e2=new Employee();

 Employee e3=new Employee();

 e1.insert(101,"SE",45000);

 e2.insert(102,"TE",25000);

 e3.insert(103,"BE",55000);

 e1.display();

 e2.display();

 e3.display(); } }

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 12

Output:

101 SE 45000

102 TE 25000

103 BE 55000

Java Methods

 A method is a block of code that performs a specific task.

 Suppose you need to create a program to create a circle and color it. You can create two

methods to solve this problem:

 a method to draw the circle

 a method to color the circle

 Dividing a complex problem into smaller chunks makes your program easy to understand

and reusable.

 In Java, there are two types of methods:

 User-defined Methods: We can create our own method based on our requirements.

 Standard Library Methods: These are built-in methods in Java that are available to

use.

Declaring a Java Method

The syntax to declare a method is:

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 13

Method Signature: Every method has a method signature. It is a part of the method

declaration. It includes the method name and parameter list.

Access Specifier: Access specifier or modifier is the access type of the method. It specifies

the visibility of the method. Java provides four types of access specifier:

o Public: The method is accessible by all classes when we use public specifier in our

application.

o Private: When we use a private access specifier, the method is accessible only in the

classes in which it is defined.

o Protected: When we use protected access specifier, the method is accessible within

the same package or subclasses in a different package.

o Default: When we do not use any access specifier in the method declaration, Java

uses default access specifier by default. It is visible only from the same package only.

Return Type: Return type is a data type that the method returns. It may have a primitive

data type, object, collection, void, etc. If the method does not return anything, we use void

keyword.

Method Name: It is a unique name that is used to define the name of a method. It must be

corresponding to the functionality of the method. Suppose, if we are creating a method for

subtraction of two numbers, the method name must be subtraction (). A method is invoked

by its name.

Parameter List: It is the list of parameters separated by a comma and enclosed in the pair

of parentheses. It contains the data type and variable name. If the method has no parameter,

left the parentheses blank.

Method Body: It is a part of the method declaration. It contains all the actions to be

performed. It is enclosed within the pair of curly braces.

Naming a Method

While defining a method, remember that the method name must be a verb and start with

a lowercase letter. If the method name has more than two words, the first name must be a

verb followed by adjective or noun. In the multi-word method name, the first letter of each

word must be in uppercase except the first word. For example:

1. Single-word method name: sum(), area()

2. Multi-word method name: areaOfCircle(), stringComparision()

It is also possible that a method has the same name as another method name in the same

class, it is known as method overloading.

Types of Method

There are two types of methods in Java:

o Predefined Method

o User-defined Method

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 14

EvenOdd.java

import java.util.Scanner;

public class EvenOdd

{

public static void main (String args[])

{

//creating Scanner class object

Scanner scan=new Scanner(System.in);

System.out.print("Enter the number: ");

//reading value from user

int num=scan.nextInt();

//method calling

findEvenOdd(num);

}

//user defined method

public static void findEvenOdd(int num)

{

//method body

if(num%2==0)

System.out.println(num+" is even");

else

System.out.println(num+" is odd");

}

}

Output 1:

Enter the number: 12

12 is even

Output 2:

Enter the number: 99

99 is odd

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 15

The this Keyword inside Java Methods

 this is a keyword in Java which is used as a reference to the object of the current class,

with in an instance method or a constructor.

 Using this you can refer the members of a class such as constructors, variables and

methods.

Note − the keyword this is used only within instance methods or constructors.

In general, the keyword this is used to −

Differentiate the instance variables from local variables if they have same names,

within a constructor or a method.

class Student {

 int age;

 Student(int age) {

 this.age = age;

 }

}

Call one type of constructor (parameterized constructor or default) from other in a class. It

is known as explicit constructor invocation.

class Student {

 int age

 Student() {

 this(20);

 }

 Student(int age) {

 this.age = age;

 }

}

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 16

Example: Use of this keyword in Java Methods

Here is an example that uses this keyword to access the members of a class. Copy and

paste the following program in a file with the name,

This_Example.java.

public class This_Example {

 // Instance variable num

 int num = 10;

 This_Example() {

 System.out.println("This is an example program on keyword this");

 }

 This_Example(int num) {

 // Invoking the default constructor

 this();

 // Assigning the local variable num to the instance variable num

 this.num = num;

 }

 public void greet() {

 System.out.println("Hi Welcome to This Example Program");

 }

 public void print() {

 // Local variable num

 int num = 20;

 // Printing the local variable

 System.out.println("Value of local variable num is : "+num);

 // Printing the instance variable

 System.out.println("Value of instance variable num is : "+this.num);

 // Invoking the greet method of a class

 this.greet();

 }

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 17

 public static void main(String[] args) {

 // Instantiating the class

 This_Example obj1 = new This_Example();

 // Invoking the print method

 obj1.print();

 // Passing a new value to the num variable through parameterized constructor

 This_Example obj2 = new This_Example(30);

 // Invoking the print method again

 obj2.print();

 }

}

Output

This is an example program on keyword this

Value of local variable num is : 20

Value of instance variable num is : 10

Hi Welcome to This Example Program

This is an example program on keyword this

Value of local variable num is : 20

Value of instance variable num is : 30

Hi Welcome to This Example Program

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 18

Java garbage collection: What is it and how does it work?

 Garbage collection in Java is the automated process of deleting code that’s no
longer needed or used.

 This automatically frees up memory space and ideally makes coding Java apps

easier for developers.

 Java applications are compiled into bytecode that may be executed by a JVM.

 Objects are produced on the heap (the memory space used for dynamic allocation),

which are then monitored and tracked by garbage collection operations.

 Most objects used in Java code are short-lived and can be reclaimed shortly after

they are created.

 The garbage collector uses a mark-and-sweep algorithm to mark all unreachable

objects as garbage collection, then scans through live objects to find objects that

are still reachable.

 Automatic garbage collection means you don’t have control over whether and when
objects are deleted.

 This is in contrast to languages like C and C++, where garbage collection is handled

manually. However, automatic garbage collection is popular for good reason—
manual memory management is cumbersome and slows down the pace of

application development.

How does garbage collection work in Java?

 During the garbage collection process, the collector scans different parts of the

heap, looking for objects that are no longer in use.

 If an object no longer has any references to it from elsewhere in the application, the

collector removes the object, freeing up memory in the heap.

 This process continues until all unused objects are successfully reclaimed.

 Sometimes, a developer will inadvertently write code that continues to be

referenced even though it’s no longer being used.
 The garbage collector will not remove objects that are being referenced in this way,

leading to memory leaks.

 After memory leaks are created, it can be hard to detect the cause, so it’s important
to prevent memory leaks by ensuring that there are no references to unused

objects.

 To ensure that garbage collectors work efficiently, the JVM separates the heap into

separate spaces, and then garbage collectors use a mark-and-sweep algorithm to

traverse these spaces and clear out unused objects.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 19

How can an object be unreferenced?

There are many ways:

1) By nulling a reference:

1. Employee e=new Employee();

2. e=null;

2) By assigning a reference to another:

1. Employee e1=new Employee();

2. Employee e2=new Employee();

3. e1=e2;//now the first object referred by e1 is available for garbage collection

3) By anonymous object:

1. new Employee();

finalize () method

The finalize() method is invoked each time before the object is garbage collected. This

method can be used to perform cleanup processing. This method is defined in Object class

as:

1. protected void finalize(){}

Note: The Garbage collector of JVM collects only those objects that are created by new

keyword. So if you have created any object without new, you can use finalize method to

perform cleanup processing (destroying remaining objects).

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup processing.

The gc() is found in System and Runtime classes.

1. public static void gc(){}

Note: Garbage collection is performed by a daemon thread called Garbage Collector (GC).

This thread calls the finalize () method before object is garbage collected.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 20

Simple Example of garbage collection in java:

1. public class TestGarbage1{

2. public void finalize(){ System.out.println("Object is garbage collected"); }

3. public static void main(String args[]){

4. TestGarbage1 s1=new TestGarbage1();

5. TestGarbage1 s2=new TestGarbage1();

6. s1=null;

7. s2=null;

8. System.gc();

9. }

}

Output:

Object is garbage collected

Object is garbage collected

When to Use finalize() Method in Java?

Finalize () Method in Java might be used in the following scenarios:

 Releasing system-level resources:

Suppose your object uses any system-level resources, you can

use finalize() Method to free up these resources before the garbage collector

reclaims your object.

 Releasing external resources:

If your object has an external resource such as file handles or database

connections, you can use the finalize() Method to release these resources before

your object can be garbage collected.

 Implementing custom clean-up procedures:

You can use finalize () Method to provide a custom clean-up procedure to your object

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 21

Why finalize() Method is used?

You can use finalize() method for the following reasons:

 You can do clean-up operations on your object before the garbage collector

reclaims it

 It protects the overlooked resources used by your object and ensures its release

before garbage collection.

 It helps in profiling and debugging by letting you check when the garbage

collector is reclaiming your objects.

Overriding in Java

Overriding provides subclasses with the ability to provide for its method implementation

defined in its superclass.

How To Override finalize() Method?

To override the finalize() method in a Java class, follow these steps:

 Declare a method named finalize() with the protected access modifier in your

class. The protected modifier allows the method to be accessed by subclasses and

classes within the same package.

 Add the @Override annotation above the method declaration to ensure you

override the finalize() method from the superclass (which is Object).

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 22

 Specify that the method throws Throwable. This is required because

the finalize() method throws Throwable,

including Exception and Error subclasses.

 Implement the desired logic inside the finalize() method. This logic typically

includes cleanup or finalization tasks that need to be performed before the object

is garbage collected. Examples of such tasks include releasing resources, closing

connections, or performing other cleanup operations.

Example:

public class MyClass {

 // Class members and methods go here

 @Override

 protected void finalize() throws Throwable {

 try {

 // Perform cleanup or finalization tasks here...

 } finally {

 super.finalize();

 }

 }

 public static void main(String[] args) {

 // Create an instance of MyClass

 MyClass myObject = new MyClass();

 // Perform some operations

 //Set the reference to null to make the object eligible for garbage

collection

 myObject = null;

 // Request garbage collection

 System.gc();

 // Perform some other operations

 // ...

 }

}

How Does the finalize() Method Works in Different Scenarios?

It's important to note that the finalize () method is generally discouraged for critical

resource cleanup or finalization tasks. It's recommended to use explicit resource

management techniques, such as try-with-resources, to ensure proper resource release

and cleanup.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 23

Let us look at how finalize () method works in two different scenarios:

 Object without finalize() method overridden:

If an object does not have the finalize () method overridden, the garbage collector will skip

calling any specific finalization logic for that object. In this case, the object will still be

eligible for garbage collection like any other object, but it won't have a chance to perform

any custom cleanup tasks before being reclaimed.

 Finalization and object resurrection:

In some scenarios, an object can be "resurrected" during its finalization process. If an

object's finalize() method resurrects the object by creating a new strong reference to it or

adding it to some reachable data structure, the object will become reachable again and will

not be garbage collected. This scenario is generally discouraged, as it can lead to

unpredictable behavior and interfere with the normal garbage collection process.

Lifetime of the Finalized Object in Java

The lifetime of your object in Java employing finalize() method passes through several

stages. These stages are as follows:

 Your object attains the “live” phase once you have created it.

 Once your object gets no references from the program, it is on the way to being

reclaimed by the garbage collector.

 When the garbage collector identifies your object, it calls upon

the finalize() method before reclaiming it.

 Upon completion of the finalize() method, the object is released from the memory

and translocated into the “unreachable” phase.

Unit III: Java as Object Oriented Programming Language- Overview

Subject: Principles of Programming Language 24

Avoiding Finalizers

Disadvantage of Finalizers

The disadvantages of Finalizers are as follows:

 You cannot assign a particular time to call for this method. Hence it can get

potentially risky to handle sophisticated operations.

 You can often face issues regarding performance

 It can be difficult at times for you to understand the lifetime of your object

embedded in a program

Alternatives for finalize()

Some of the alternatives to finalize() method are as follows:

 You can use the shut-down hook to perform any cleanup processing.

 You can use a reference queue to release objects by performing cleanups when

they become obsolete.

 You can use the try-with-resources statement, which came into existence in Java

7. This statement helps you to easily handle resources that need to be released

when they become obsolete.

 You can use the PhantomReference class, which has a similar action to the

previously mentioned alternatives.

