
Department of Computer Engineering

SE Computer- Division A
Course Name :Principles of Programming Languages
Course Code: 210255
Subject InCharge: Mrs.Savita Mane

Department of Computer Engineering

Unit 1 Fundamentals of Programming
Importance of Studying Programming Languages, History of Programming
Languages, Impact of Programming Paradigms, Role of Programming Languages,
Programming Environments.
Impact of Machine Architectures: The operation of a computer, Virtual Computers
and Binding Times.
Programming paradigms- Introduction to programming paradigms, Introduction to
four main Programming paradigms- procedural, object oriented, functional, and
logic and rule based.

Department of Computer Engineering

Topic Book To Refer

Importance of Studying
Programming Languages,
History of Programming
Languages, Impact of
Programming Paradigms, Role
of Programming Languages,
Programming Environments.
Impact of Machine
Architectures: The operation of
a computer, Virtual Computers
and Binding Times.

T. W. Pratt, M. V. Zelkowitz,
"Programming Languages

Design and Implementation‖,
4th Ed, PHI, ISBN 81-203-2035-

2.

Department of Computer Engineering

Topic Book To Refer

Programming paradigms-
Introduction to programming
paradigms, Introduction to four
main Programming paradigms-
procedural, object oriented,
functional, and logic and rule
based.

T. W. Pratt, M. V. Zelkowitz,
"Programming Languages

Design and Implementation‖,
4th Ed, PHI, ISBN 81-203-2035-

2.
1.4.2 Page No.28 - 30

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Importance of Studying Programming Languages

Computers aren't very smart

Ask the computer to draw a picture
of bird…

Will it draw?

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Importance of Studying Programming Languages

Computers are bad at understanding things

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Importance of Studying Programming Languages

Computers cannot understand English

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Functional View of a Computer

Input
Devices

CPU

Main
Memory

Output
Devices

Secondary
Memory

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Functional View of a Computer

Input
Devices

Output
Devices

E.g., Keyboard
and mouse E.g., Monitor

▪ Humans interact with computers via Input and
Output (IO) devices

▪ Information from Input devices are processed by
the CPU and may be shuffled off to the main or
secondary memory

▪ When information need to be displayed, the CPU
sends them to one or more Output devices

Unit 1 Fundamentals of Programming

Department of Computer Engineering

• A program is just a sequence of instructions telling the computer what
to do

• Obviously, we need to provide these instructions in a language that
computers can understand

• We refer to this kind of a language as a programming language

• Python, Java, C and C++ are examples of programming languages

• Every structure in a programming language has an exact form (i.e.,
syntax) and a precise meaning (i.e., semantic)

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Six reasons to Learn Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Reason 1:

To improve your ability to develop effective algorithms

● The depth at which people can think is heavily influenced by the

expressive power of their language.

● It is difficult for people to conceptualize structures that they

cannot describe, verbally or in writing.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Reason 2:

To improve your use of your existing programming language

● Many professional programmers have a limited formal education

in computer science, limited to a small number of programming

languages.

● They are more likely to use languages with which they are most

comfortable than the most suitable one for a particular job.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Reason 3

● Computer science is consider as a young discipline and most

software technologies (design methodology, software

development, and programming languages) are not yet mature.

Therefore, they are still evolving.

● The understanding of programming language design and

implementation makes it easier to learn new languages.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Reason 4

● It is often necessary to learn about language implementation; it

can lead to a better understanding of why the language was

designed the way that it was.

● Fixing some bugs requires an understanding of implementation

issues.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Reason 4

● Some languages are better for some jobs than others.

○ (i) FORTRAN and APL for calculations, COBOL and RPG for

report generation, LISP and PROLOG for AI, etc.

● Improve your use of existing programming language

● By understanding how features are implemented, you can make

more efficient use of them.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Reason 5

● To improve your use of existing programming language

● By understanding how features are implemented, you can make

more efficient use of them.

● Examples:

● Creating arrays, strings, lists, records.

● Using recursions, object classes, etc.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Reason 6

● Designing a new language require prior knowledge of previous one

to make it effective, efficient and convenient to users.

● The previous knowledge as well as concepts are usual to design a

new language irrespective of their work domains.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

History of Programming languages

Click Here for Video

https://www.youtube.com/watch/RU1u-js7db8

Unit 1 Fundamentals of Programming

Department of Computer Engineering

History of Programming languages
https://www.quiz-maker.com/QKM3653ME

Unit 1 Fundamentals of Programming

Department of Computer Engineering

History of Programming languages

● Development of Early Language

● Evolution of Software Architecture

● Application Domains

Unit 1 Fundamentals of Programming

Department of Computer Engineering

History of Programming languages

● 1951- 55: Experimental use of expression compilers.

● 1956- 60: FORTRAN, COBOL, LISP, Algol 60.

● 1961- 65: APL notation, Algol 60 (revised), SNOBOL, CPL.

● 1966- 70: APL, SNOBOL 4, FORTRAN 66, BASIC, SIMULA, Algol 68, Algol-W, BCPL.

● 1971- 75: Pascal, PL/1 (Standard), C, Scheme, Prolog.

● 1976- 80: Smalltalk, Ada, FORTRAN 77, ML, C++.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

History of Programming languages

● 1981- 85: Smalltalk-80, Prolog, Ada 83.

● 1986- 90: SML, Haskell.

● 1991- 95: Ada 95, TCL, Perl.

● 1996- 2000: Java.

● 2000- 05: C#, Python, Ruby, Scala.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Development of

Early Language

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Development of Early Language

● Numerically based languages

Computing mathematical expressions

FORTRAN, Algol, Pascal, PL/1, BASIC, C, C++

● Business languages

COBOL (Common Business Oriented Language)

English-like notation

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Development of Early Language

● Artificial intelligence languages

Tree search; Rule-based paradigm

LISP (LISt Processing)

PROLOG (PROgramming in LOGic)

● System languages :C, C++

● Script languages: AWK, Perl, TCL/TK

● Web programming: HTML, XML, Java, Microsoft *.NET family

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Evolution of Software Architecture

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Evolution of Software Architecture

● Mainframe Era

○ Batch processing (batches of files)

○ Interactive processing (time sharing)

● Effects on language design

○ File I/O in batch processing

○ Error handling in batch processing

○ Time constraints in interactive processing

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Evolution of Software Architecture

● Personal Computer

○ Interactive processing

○ Embedded system environments

Effects on language design

○ No need for time sharing

○ Good interactive graphics

○ Non-standard I/O devices for embedded systems

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Evolution of Software Architecture

● Networking Era

○ Client-server model of computing

○ Server: a program that provides information

○ Client - a program that requests information

Effects on language design

○ Interaction between the client and server programs

○ Active web pages, Security issues, Performance

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Application Domain

● Business Processing

● Scientific

● System

● Artificial Intelligence

● Publishing

● Process

Department of Computer Engineering

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Programming Paradigms
This Causes Impact on

● Way Programmers are Solving the Program
● Challenge to Describe Needs of the Stakeholders and Solution

Requirements
● Provided an Underlying Model to Verify and Validate the Program in a

Reliable Manner.
● Minimize the Design Errors
● Provides Variety of Techniques to manage Complexity.
● How to Design a Software

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Influences in

Design of

Programming

Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Some influences on the development of Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Some influences on the development of Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Some influences on the development of Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Role of Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Good Language

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Clarity, Simplicity And Unity

● A Programming language provides both a conceptual framework for
Algorithm planning and means of expressing them.

● It should provide a clear, simple and unified set of concepts that can be used as
primitives in developing algorithms.

● It should have
• It has minimum number of different concepts
• with Rules for their combination being
• simple and regular.
This attribute is called conceptual integrity.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Orthogonality
● It is one of the most important feature of PL orthogonality is the property that

means " Changing A does not change B".

● If I take Real world example of an orthogonal system Would be a radio, where

changing the station does not change the volume and vice versa.

● When the features of a language are orthogonal, language is easier to learn and

programs are easier to write because only few exceptions and special cases to

be remembered.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Naturalness for the application

● Language should provide appropriate data structures, operations, control

structures and proper natural syntax

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Support for Abstraction

There is always found that a substantial gap remaining between the

abstract data structure and operations that characterize the solution to a

problem and their particular data structure and operations built into a

language.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment

● An appropriate programming environment adds an extra utility and make

language to be implemented easily like

● The availability of- Reliable- Efficient - Well documentation Speeding up

creation and testing by-special Editors- testing packages

● Facility- Maintaining and Modifying- Multi Version of program software product.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment

Programming Environment:
“A Programming Environment is the collection of
tools used in the development of software.”
• In a general sense, a programming environment

combines hardware and software that allows a
developer to build applications.

• Developers typically work in integrated development
environments or IDEs.

• These connect users with all the features necessary
to write and test their code correctly.

• Different IDEs will offer other capabilities and
advantages.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment

What is an IDE?
An Integrated Development Environment
integrates common development tools in
single software environment.
An IDE normally consists of at least:-
• File system
• Text editor
• Linker
• Compiler
• Integrated tools

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment

IDEs includes features/tools like:
• Debugging
• Syntax highlighting
• Code completion
• Language support
• Code search
• Refactoring
• Version control
• Visual programming

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Ease of program verification:- Reusability

● The reusability of program written in a language is always a central concern. A program is

checked by various testing technique like

● Formal verification method Desk checking Input output test checking.

● We verify the program by many more techniques.

● A language that makes program verification difficult maybe far more troublesome to use.

● Simplicity of semantic and syntactic structure is a primary aspect that tends to simplify

program verification.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Syntax and Semantics

● The syntax of programming language is what the program looks like.

● How statements declaration and other constructs are written

● The semantic of Pl is meaning is a meaning given to the various syntactic

constructors.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Role of Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language Paradigms

● Imperative language

● Applicative language

● Rule based language

● Object oriented language

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Imperative Languages

● Command driven or statement oriented

● The basic concept is machine state

● A program consists of sequences of statement

● Execution of each instruction causes the computer to change the value of one or

more location , to enter a new state.

● Syntax of such languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Imperative Languages

● Many Widely used Languages C, C++,

FORTRAN, PL/I, Pascal , Ada, Small Talk

and COBOL support this model.

● Most of the all conventional languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Applicative Languages
● Programming language is to look at the function that the program represents

rather than just the state changes as the program executes, statement by
statement.

● Focus on the desired result rather than at the available data.
● What is the function that must be applied to the initial machine state by

accessing the initial set of variables and combining them in specific ways to
get an answer?

● The languages which emphasize this view are called applicative or functional
languages.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Applicative Languages
● LISP and ML are two functional languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Rule based Languages
● Execute by checking for the presence of a certain enabling condition and,

when present, executing an appropriate action.
● The most common rule-based language is Prolog, also called a logic

programming

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Rule based Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Object Oriented Languages

● Complex data objects are built, then a limited set of functions are designed
 to operate on those data.

● Complex objects are designed as extensions of simpler objects, inheriting
properties of the simpler object.

● The best of two of the other computational models.
○ By building concrete data objects, an object-oriented program gains

the efficiency of imperative languages.
○ By building classes of functions that use a restricted set of data

objects, we build the flexibility and reliability of the applicative model.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Generality of Computational Model

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Role of Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language standardization

● What describes a programming language?

● int i; i = (1 && 2) + 3 , Is it valid Statement in C?

● To have an answer to this we usually follow following

approaches (Next Slide)

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language standardization

1. Read the definition in the language reference manual to

decide what the statement means.

2. Write a program on your local computer system to see

what happens.

3. Read the definition in the language standard.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language standardization
To address these concerns, most languages have standard definitions.

1. Proprietary standards.
a. These are definitions by the company that develops and owns the language.
b. Do not work for languages that have become popular and widely used.
c. Variations in implementations soon appear with many enhancements and

incompatibilities.
2. Consensus standards.

d. These are documents produced by organizations based on an agreement by
the relevant participants.

e. Consensus standards, or simply standards, are the major method to ensure
uniformity among several implementations of a language.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language standardization
Proprietary Consensus

HTML , C#, WWW

Need License No License

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language standardization

To use standards effectively, we need to address three issues:

1. Timeliness : When do we standardize a language?

2. Conformance : What does it mean for a program to adhere to a standard

and for a compiler to compile a standard?

3. Obsolescence: When does a standard age, and how does it get modified?

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language standardization

To use standards effectively, we need to address three issues:

Timeliness : When do we standardize a language?

● One would like to standardize a language early enough so that there is

enough experience in using the language, yet not so late as to encourage

many incompatible implementations.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language standardization

To use standards effectively, we need to address three issues:

● Conformance : What does it mean for a program to adhere to a standard

and for a compiler to compile a standard?

● A program is conformant if it only uses features defined in the standard.

● A conforming compiler is one that, when given a conformant program,

produces an executable program that produces the correct output.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language Internationalization

To use standards effectively, we need to address three issues:

Obsolescence: When does a standard age, and how does it get modified?
● Standards have to be reviewed every 5 years and either be renewed or dropped.
● The 5-year cycle often gets stretched out somewhat, but the process is mostly

effective
● Problem with updating a standard is what to do with the existing collection of

programs written for the older standard
● most standards require backward compatibility; the new standard must include

older versions of the language.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Role of Programming Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language Internationalization

● Collating sequences : In what collating sequence should the characters be ordered?

○ Sorting. The position of non-Roman characters, such as A, @, B, 3, and others s

not uniformly defined and may have different interpretations in different

countries.

○ Case. Some languages like Japanese, Arabic, Hebrew, and Thai have no

uppercase—lowercase distinction.

○ Scanning direction. Most languages read from left to right, but others exist

(e.g., right to left, top to bottom).

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language Internationalization

● Country-specific date formats.

11/26/02 in the United States is 26/11/02 in England; 26.11.02 in France; 26-XI-02

in Italy, etc.

● Country-specific time formats.

5:40 p.m. in the United States is 17:40 in Japan, 17.40 in Germany, 17h40 in

France,and so on.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language Internationalization
● Time zones.

○ Although the general rule is 1 hour of change for each 15 degrees of

longitude, it is more a guideline than a reality.

○ Time zones are generally an integral number of hours apart, but some vary by

15 or 30 minutes.

○ Time changes (e.g., daylight savings time in the United States and summer time

in Europe) do not occur uniformly around the world.

○ Translating local time into a worldwide standard time is nontrivial.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Language Internationalization
● Ideographic systems.

Some written languages are not based on a small number of characters forming an

alphabet, but instead use large numbers of ideographs (e.g., Japanese, Chinese, and

Korean).

Often 16 bits might be needed to represent text in those languages.

● Currency.

 Representation of currency (e.g., $, £, ¥) varies by country.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment

● Effects on Language Design

● Environment Frameworks

● Job Control and Process Languages

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment-Effects on Language Design
● it is ordinarily desirable to have different programmers or programming groups

design, code, and test parts of a program before final assembly of all components into
a complete program.

● Language must be structured so that subprograms or other parts can be
separately compiled and executed, later merged without change into the final
program.

● Compiler may need information about other subprograms or shared data
○ The specification of the number, order, and type of parameters expected by

any subprogram
○ to determine the storage representation of the external variable
○ The definition of a data type that is defined externally but is used to declare

 any local variable within the subprogram

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment-Effects on Language Design
● Another aspect of separate compilation that affects language design

○ shared name
○ scoping rules
○ Inheritance

● Testing and debugging.
○ Execution trace features.
○ Breakpoints.
○ Assertions.

assert(X>0 and A=1) or (X=0 and A>B+10).

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment- Environment Frameworks

● Support environment consists of infrastructure services called the environment

framework to manage development of Program.

● Supplies services such as a data repository, graphical user interface, security, and

communication services.

● Languages are sometimes designed to allow for easy access to these infrastructure

services.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Environment- Job Control and Process Languages

● Click and Execute Environment

● If the compilation fails, the user could invoke an editor to correct the Program;

● If the compilation succeeds, the user could invoke a loader and execute

the program.

● a process or scripting language which generally interpret and have the property that

they view programs and files as the primitive data to manipulate.

● “faster, better, and cheaper.”

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of

Machine

Architectures

In developing a
Language
architecture of s/w
influences the
design of language

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● A computer is an integrated set of algorithms and data structures capable of
storing
and executing programs.

● A computer may be constructed as an actual physical device using wires, integrated
circuits, circuit boards, and the like, in which case it is termed an actual computer or
hardware computer.

● it may also be constructed via software by programs running on another computer,
in which case it is a software-simulated computer.

● A programming language is implemented by construction of a translator, which
translates programs in the language into machine language programs that can be
directly executed by some computer.

Computer Hardware

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

1. Data. A computer must provide various kinds of elementary data items and data structures to be
manipulated.

2. Primitive operations. A computer must provide a set of primitive operations useful for
manipulating the data.

3. Sequence control. A computer must provide mechanisms for controlling the sequence in which the
primitive operations are to be executed.

4. Data access. A computer must provide mechanisms for controlling the data supplied to each
execution of an operation.

5. Storage management. A computer must provide mechanisms to control the allocation of storage
for programs and data

6. Operating environment. A computer must provide mechanisms for communication with an
external environment containing programs and data to be processed.

Computer Hardware

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of

Machine

Architectures

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● Common alternative to the strict hardware realization of a computer is the
firmware computer simulated by a microprogram running on a special micro
programmable hardware computer.

● Microprogram simulation of a computer is sometimes termed emulation.
● We also refer to the resulting computer as a virtual computer because it is

simulated by the microprogram; without this microprogrammed simulation, the
machine would not exist.

Firmware of Computers

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● Translator could be designed to translate programs in the high-level language
into equivalent programs in the machine language of the actual computer.

● Instead simulate, through programs running on another host computer, a
computer whose machine language is the high-level language.

● We construct with software running on the host computer (the high-level
language computer) that we might otherwise have constructed in hardware. This
is termed a software simulation (or software interpretation) of the high-level
language computer on the host computer.

Translators and Virtual Architectures

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● An assembler is a translator whose object language is also some variety of machine
language for an actual computer but whose source language, an assembly language,
represents for the most part a symbolic representation of the object machine code.

● A compiler is a translator whose source language is a high-level language and whose
object language is close to the machine language of an actual computer,

● A loader or link editor is a translator whose object language is actual machine
code and whose source language is almost identical.

Translators

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● A preprocessor or a macroprocessor is a translator whose source language
is an extended form of some high-level language such as C++ or Java and
whose object language is the standard form of the same language.

Translators

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER
Translators

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● The simulated computer accepts as input data a program in the high-level
language.

● The main simulator program performs an interpretation algorithm similar to that
of decoding and executing each statement of the input program in the appropriate
sequence and producing the specified output from the program.

● host computer creates a virtual machine simulating
● the high-level language.
● When the host computer is executing the high-level program, it is not possible to tell

whether the program is being executed directly by the hardware or is first
converted to the low-level machine language of the hardware computer.

Software Simulation

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● Translation and simulation provide different advantages in a programming language
implementation.

● Some aspects of program structure are best translated into simpler forms before
execution; other aspects are best left in their original form and processed only as
needed during execution.

● The major disadvantage of translation is loss of information about the program.
● In Simulation By leaving statements in their original form until they need to be

executed, no space is needed to store multiple copies of long code sequences;
● the basic code need be stored only once in the simulation routine.
● However, the total cost of decoding must be paid each time the statement is to be

executed.

Translators and Virtual Architectures

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - THE OPERATION OF A COMPUTER

● The common division of languages
1. Compiled languages : translated into the machine language of the actual computer

being used before execution begins, eg. C, C++, FORTRAN, Pascal, and Ada are
2. Interpreted languages : In such a language implementation, the translator does not

produce machine code for the computer being used. Instead, the translator produces
some intermediate form of the program that is more easily executable than the
original program form yet that is different from machine code.

● Java and the WWW have changed some of these rules.

Translators and Virtual Architectures

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

1. Through a hardware realization, representing the data structures and algorithms
directly with physical devices.

2. Through a firmware realization, representing the data structures and algorithms by
microprogramming a suitable hardware computer

3. Through a virtual machine, representing the data structures and algorithm by
programs and data structures in some other programming language.

4. Through some combination of these techniques, representing various parts of the
computer directly in hardware, in microprograms, or by software simulation as
appropriate.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Virtual Computers and Language Implementations

● The language is implemented on a different computer, the implementor tends to see
a slightly (or very) different virtual computer in the language definition.

● two different implementations of the same language may utilize a different set of
data structures and operations in the implementation,

● three factors lead to differences among implementations of
1. Differences in each implementor’s conception of the virtual computer
2. Differences in the facilities provided by the host computer on which the language

is to be implemented.
3. Differences in the choices made by each implementor as to how to simulate the

virtual computer elements

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Hierarchies of Virtual Machines

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Bindings: Names and Attributes

● Names are a fundamental abstraction in languages to denote entities
○ Meanings associated with these entities is captured via attributes associated with

the names
● Attributes differ depending on the entity:

○ location (for variables)
○ value (for constants)
○ formal parameter types (functions)

● Binding: Establishing an association between name and an attribute.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Bindings: Names

● Names or Identifiers denote various language entities:
○ Constants
○ Variables
○ Procedures and
○ Functions Types, . . .

● Entities have attributes

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Bindings: Attributes

● Attributes are associated with names (to be more precise, with the entities they denote).
● Attributes describe the meaning or semantics of names (and entities).

● An attribute may be
○ static: can be determined at translation (compilation) time, or
○ dynamic: can be determined only at execution time.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Binding and Binding Time -Importance of Binding Times

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Binding Time -Importance of Binding Times

● Language design time: built-in features such as keywords

● Language implementation time: implementation dependent semantics such as bit-width of an integer

● Program writing time: names chosen by programmer

● Compile time: bindings of high-level constructs to machine code

● Link time: final bindings of names to addresses

● Load time: Physical addresses (can change during run time)

● Run time: bindings of variables to values, includes many bindings which change during execution

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Binding and Binding Time -Classes of Binding Times

1. Execution time (run time)
a. On entry to a subprogram or block.
b. At arbitrary points during execution.

2. At arbitrary points during execution.
a. Bindings chosen by the programmer.
b. Bindings chosen by the translator.

3. Language implementation time.
4. Language definition time.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Impact of Machine Architectures - VIRTUAL COMPUTERS AND BINDING TIMES

Binding and Binding Time -Classes of Binding Times

● consider the simple assignment statement X=X+10
● Points to Think:

○ Set of types for Variable X.
○ Type of variable X.
○ Set of possible values for variable X.
○ Value of Variable X.
○ Representation of the constant 10.
○ Properties of the operator +.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Languages

Machine languages and assembly languages are also called low-level languages

1. Machine languages.

2. Assembly languages.

3. High-level languages.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Languages

Machine languages and assembly languages are also called low-level languages

● A Machine language program consists of a sequence of zeros and ones.
● Each kind of CPU has its own machine language.
● Advantages

○ Fast and efficient
○ Machine oriented
○ No translation required

● DisadvantageS
○ Not portable
○ Not programmer friendly

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Assembly language programs

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

● Each statement in assembly language corresponds to one statement in machine
language.

● Assembly language programs have the same advantages and disadvantages as machine
language programs.

● Compare the following machine language and assembly language programs:

Unit 1 Fundamentals of Programming

Department of Computer Engineering

High-Level Programming Languages

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

● A high-level language (HLL) has two primary components
○ a set of built-in language primitives and grammatical rules
○ a translator

● A HLL language program consists of English-like statements that are governed by a strict
syntax.

● Advantages
○ Portable or machine independent
○ Programmer-friendly

● Disadvantages
○ Not as efficient as low-level languages
○ Need to be translated
○ Examples : C, C++, Java, FORTRAN, Visual Basic, and Delphi.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

● Why are there hundreds of programming languages in use today?
○ Some programming languages are specifically designed for use in certain

applications.
○ Different programming languages follow different approaches to solving

programming problems
● A programming paradigm is an approach to solving programming problems.
● A programming paradigm may consist of many programming languages.
● Common programming paradigms:

○ Imperative or Procedural Programming
○ Object-Oriented Programming
○ Functional Programming
○ Logic Programming

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- IMPERATIVE and DECLARATIVE

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

● Imperative programming: telling the "machine”
(computer) how to do something, and as a result
what you want to happen will happen.

● Declarative programming: telling the "machine”
(computer) what you would like to happen, and
let the computer figure out how to do it.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- IMPERATIVE and DECLARATIVE

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

Imperative style of programming:
var numbers = [1,2,3,4,5]
var doubled = []

for(var i = 0; i < numbers.length; i++) {
 var newNumber = numbers[i] * 2
 doubled.push(newNumber)
}
console.write(doubled) //=> [2,4,6,8,10]

Declarative style of programming:
var numbers = [1,2,3,4,5]

var doubled = numbers.map(function(n)
{
 return n * 2
})

console.log(doubled) //=> [2,4,6,8,10]

Problem Statement :- Double all the numbers in an array.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- PROCEDURAL/STRUCTURED

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

● Procedural programming is a computer programming language that organises our code into small
programs" that use and change our datas.

● Structured programming is a programming paradigm recommending hierarchical division into
blocks of code with one entry point and one or more exit points.

● In structured programming we use three main structures :
○ sequences (instruction _1; instruction _2;…; instruction _n
○ choices (if, if...else, switch, case)
○ iterations (while, repeat, for).

● Key words: variables, types, procedures and abstract datas. Using: network systems, operating
systems, etc.

● Procedural/structured languages:
 Fortran , Cobol , Pascal, c, ,c++ etc,

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- PROCEDURAL/STRUCTURED

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms-Object-oriented programming

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

● Object-oriented programming is a programming paradigm in which programs are defined using
objects - the state of the connecting elements (or fields) and behavior (or method).

● Object-oriented computer program is expressed as a set of such objects, which communicate with
each other in order to perform tasks.

● Key words: classes and objects, inheritance, encapsulation, polymorphism.
● Using: www and stand-alone applications.
● Object-oriented languages

○ Simula,
○ Smalltalk,
○ C++,
○ C#,
○ Java, others.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- Object Oriented

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms-Functional programming

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

● Functional programming is a programming paradigm in which the functions are the core values ​​and the
emphasis is on valuation (often recursive) function, and not to execute commands.

● Theoretical basis for functional programming was developed in the 19330s of the Twentieth century by
Alonzo Church's lambda calculus, called lambda calculus with types.

● Key words: functions, lambda calculus, parametric polymorphism.
● Using: theoretical, in telecommunications, in financial calculations.
● Functional languages:

○ Lisp,
○ ML,
○ Haskell,
○ H#,
○ Erlang
○ others.

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- Functional Programming

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms-Logical programming

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- Functional Programming

use mnemonics to represent machine instructions

ØEach statement in assembly language corresponds to one statement in
machine language.

ØAssembly language programs have the same advantages and
disadvantages as machine language programs.

Compare the following machine language and assembly language programs:

Unit 1 Fundamentals of Programming

Department of Computer Engineering

● The paradigm of logic programming is a programming method in which the program is given as a
set of relations, and the relationship between these dependencies.

● Key words: facts, reports, queries.
● Using: theoretical, artificial intelligence.
● Logical languages:

○ Gödel,
○ Fril,
○ Prolog, others.

Programming Paradigms-Logical programming

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- Logical programming

use mnemonics to represent machine
instructions

ØEach statement in assembly language
corresponds to one statement in machine
language.

ØAssembly language programs have the same
advantages and disadvantages as machine :

Unit 1 Fundamentals of Programming

Department of Computer Engineering

Programming Paradigms- Logical programming

use mnemonics to represent machine
instructions

ØEach statement in assembly language
corresponds to one statement in machine
language.

ØAssembly language programs have the same
advantages and disadvantages as machine :

Procedure

C

COBOL

FORTRAN

PASCAL

Java Script

Object Oriented

C++

Java

Ruby

Python

Ada

Smalltalk

PhP

Function Oriented

ML

LISP

 DART

SCHEME

LOGO

SQL

Logic Oriented

PROLOG

CURRY

FRIL

OZ

ALMA-0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123

