
Unit II
Structuring the Data, Computations and Program

1

Elementary Data Types :Primitive data Types, Character String types, User Defined

Ordinal Types, Array types, Associative Arrays, Record Types, Union Types, Pointer

and reference Type.

Expression and Assignment Statements: Arithmetic expression, Overloaded

Operators, Type conversions, Relational and Boolean Expressions, Short Circuit

Evaluation, Assignment Statements, Mixed mode Assignment.

Statement level Control Statements: Selection Statements, Iterative Statements,

Unconditional Branching.

Subprograms: Fundamentals of Sub Programs, Design Issues for Subprograms, Local

referencing Environments, Parameter passing methods.

Abstract Data Types and Encapsulation Construct: Design issues for Abstraction,

Parameterized Abstract Data types, Encapsulation Constructs, Naming Encapsulations.

Expression and Assignment Statements

1. Arithmetic expression

 In programming languages, arithmetic expressions consist of operators, operands,
parentheses, and function calls.

 An operator can be unary, meaning it has a single operand, binary, meaning it has two
operands, or ternary, meaning it has three operands.

 In most programming languages, binary operators are infix, which means they appear
between their operands, while in Lisp, it it prefix.

Following are the primary design issues for arithmetic expressions:

A. What are the operator precedence rules?

 The precedence of the arithmetic operators of Ruby and the C-based languages
are as follows:

Unit II
Structuring the Data, Computations and Program

2

 ** stands for exponentiation operator.

B. What are the operator associativity rules?

 When an expression contains two adjacent 2 occurrences of operators with the same
level of precedence, the question of which operator is evaluated first is answered by
the associativity rules of the language.

 Associativity in common languages is left to right, except that the exponentiation
operator (when provided) sometimes associates right to left.

 The associativity rules for a few common languages are given here:

2. Overloaded Operators

 Resolution of overloaded operators can be done at translation time.

 For readability purposes, operators are often overloaded.

 For example, + is used for both integer and real addition, * is used for both integer

and real multiplication. In each program context, however, it should be clear which

specific hardware operation is to be invoked, since integer and real arithmetic differ.

 In a statically typed language, where all variables are bound to their type at

translation time, the binding between an overloaded operator and its corresponding

machine operation can be established at translation time, since the types of the

operands are known.

 This makes the implementation more efficient than in dynamically typed languages,

for which it is necessary to keep track of types in run-time descriptor.

Unit II
Structuring the Data, Computations and Program

3

 e.g. + & - All these operators are used for multiple purpose.

3. Type conversions

 narrowing conversion e.g. float to int

 widening conversion e.g. int to float

4. Relational and Boolean Expressions

 A relational operator is an operator that compares the values of its two operands. A

relational expression has two operands and one relational operator.

 The value of a relational expression is Boolean.

 The syntax of the relational operators for equality and inequality differs among some

programming languages. For example, for inequality, the C-based languages use != , Ada

uses /= , Lua uses ~= , Fortran 95+ uses .NE. or <> , and ML and F# use <> .

 JavaScript and PHP have two additional relational operators, === and !== . These are similar

to their relatives, == and !=, but prevent their operands from being coerced. For example,

the expression

"7" == 7

is true in JavaScript, because when a string and a number are the operands of a relational

operator, the string is coerced to a number. However,

"7" === 7

is false, because no coercion is done on the operands of this operator.

 The relational operators always have lower precedence than the arithmetic operators, so

that in expressions such as

a + 1 > 2 * b

the arithmetic expressions are evaluated first.

 Boolean expressions consist of Boolean variables, Boolean constants, relational expressions,

and Boolean operators.

Unit II
Structuring the Data, Computations and Program

4

 The operators usually include those for the AND, OR, and NOT operations, and sometimes

for exclusive OR and equivalence.

 Boolean operators usually take only Boolean operands (Boolean variables, Boolean literals,

or relational expressions) and produce Boolean values.

 The precedence of the arithmetic, relational, and Boolean operators in the C-based

languages is as follows:

5. Short Circuit Evaluation

 A short-circuit evaluation of an expression is one in which the result is determined

without evaluating all of the operands and/or operators.

 For example, the value of the arithmetic expression

(13 * a) * (b / 13 - 1)

Is independent of the value of (b / 13 - 1) if a is 0 , because 0 * x = 0 for any x.

 So, when a is 0, there is no need to evaluate (b / 13 - 1) or perform the second

multiplication.

 However, in arithmetic expressions, this shortcut is not easily detected during

execution, so it is never taken.

 The value of the Boolean expression

(a >= 0) && (b < 10)

Is independent of the second relational expression if a < 0, because the expression
(FALSE && (b < 10)) is FALSE for all values of b.

 A language that provides short-circuit evaluations of Boolean expressions and also

has side effects in expressions allows subtle errors to occur.

https://blogger.googleusercontent.com/img/a/AVvXsEhjBujM_rfSNGhgixYfEadC0eMLfzpcfX8hN5Bmosg2zdXWw2dmRthpERtImkJyS97puWFPpm1sQzcu-dJXZVX7DaqlkHbLAxP1liumIbBHk0lXi43Wu9GLi2lemabvbP0Uh08fEC8O6-lcMaScI5WXIPbCMkzWZYBlxDjd53FITaSOcKlxY5PCmG1JlQ=s418

Unit II
Structuring the Data, Computations and Program

5

 Suppose that short-circuit evaluation is used on an expression and part of the

expression that contains a side effect is not evaluated; then the side effect will occur

only in complete evaluations of the whole expression.

 If program correctness depends on the side effect, short-circuit evaluation can result

in a serious error.

 For example, consider the Java expression

(a > b) || ((b++) / 3)

 In this expression, b is changed (in the second arithmetic expression) only when a <=

b. If the programmer assumed b would be changed every time this expression is

evaluated during execution (and the program’s correctness depends on it), the
program will fail.

 In the C-based languages, the usual AND and OR operators, && and || ,

respectively, are short-circuit.

 Ada allows the programmer to specify short-circuit evaluation of the Boolean

operators AND and OR by using the two-word operators and then and or else . Ada

also has non–short-circuit operators, and and or .

6. Assignment Statements

Simple Assignments

i. Nearly all programming languages currently being used use the equal sign for the
assignment operator.

ii. ALGOL 60 and Ada makes use of := as the assignment operator.

iii. In some languages, such as FORTRAN and Ada, an assignment can appear only as a
stand-alone statement, and the destination is restricted to a single variable.

Conditional Targets

Unit II
Structuring the Data, Computations and Program

6

 Perl allows conditional targets on assignment statements.

 For example, consider

($flag ? $count1 : $count2) = 0;

 which is equivalent to

if ($flag) {

$count1 = 0;

}

else {

$count2 = 0;

}

Compound Assignment Operators

 The form of assignment that can be abbreviated with this technique has the

destination variable also appearing as the first operand in the expression on the right side,

as in

a = a + b

 By Compound Assignment Operator, above statement is written as follows:

a+=b

 It is provided by ALGOL 68, C-based languages, Perl, JavaScript, Python, and
Ruby.

Unit II
Structuring the Data, Computations and Program

7

Unary Assignment Operators

 The C-based languages, Perl, and JavaScript include two special unary arithmetic

operators that are actually abbreviated assignments. They combine increment and
decrement operations with assignment.

 In the assignment statement

sum = ++ count;

 It is similar to

count = count + 1;

sum = count;

 If the same operator is used as a postfix operator, as in

sum = count ++;

 It is similar to

sum = count;

count = count + 1;

count ++

 It is similar to

count=count+1

 When two unary operators apply to the same operand, the association is right to
left. For example, in

- count ++

 count is first incremented and then negated. So, it is equivalent to

Unit II
Structuring the Data, Computations and Program

8

- (count ++)

Assignment as an Expression

 Expression is evaluated and then it is assigned.

e.g.

1. while ((ch = getchar()) != EOF) { ... }

2. a = b + (c = d / b) - 1

 Multiple Assignments

 Some programming languages like Perl, Ruby, and Lua supports multiple-target,

multiple-source assignment statements.

 For example, in Perl one can write

($first, $second, $third) = (20, 40, 60);

 Here, $first is assigned 20, $second is assigned 40 and $third is assigned 60.

7. Mixed mode Assignment

 One of the design decisions concerning arithmetic expressions is whether an
operator can have operands of different types.

 Languages that allow such expressions, which are called mixed-mode expressions,

must define conventions for implicit operand type conversions because computers do not
have binary operations that take operands of different types.

 e.g.

int a=4;

float b=3.14;

float c;

c= a+b;

