
Unit II
Structuring the Data, Computations and Program

1

Elementary Data Types :Primitive data Types, Character String types, User Defined

Ordinal Types, Array types, Associative Arrays, Record Types, Union Types, Pointer

and reference Type.

Expression and Assignment Statements: Arithmetic expression, Overloaded

Operators, Type conversions, Relational and Boolean Expressions, Short Circuit

Evaluation, Assignment Statements, Mixed mode Assignment.

Statement level Control Statements: Selection Statements, Iterative Statements,

Unconditional Branching.

Subprograms: Fundamentals of Sub Programs, Design Issues for Subprograms, Local

referencing Environments, Parameter passing methods.

Abstract Data Types and Encapsulation Construct: Design issues for Abstraction,

Parameterized Abstract Data types, Encapsulation Constructs, Naming Encapsulations.

Subprograms

Subprograms:

Definition:

 A collection of statements which can be reused to save memory space and coding time is

known as a subprogram.

Difference Between Function and Procedure.

 Function:

 The function is one of the fundamental thoughts in computer programming. It is used to

calculate something from a given input.

 Hence it got its name from Mathematics. The function can be either user-defined or predefined.

The function program has a block of code that performs some specific tasks or functions.

Procedure:

 In programming a particular set of instructions or commands are known as a procedure.

Counting on the programming language it is known as a procedure, subroutine, function, or

subprogram.

Unit II
Structuring the Data, Computations and Program

2

Example:

Function

Procedure

Advantages of Subprograms:

a. Readability

b. Abstraction

c. Code reusability

Unit II
Structuring the Data, Computations and Program

3

Parameters Function Procedure

Basics
Functions calculate the results of a
program on the basis of the given input.

Procedures perform certain tasks in a
particular order on the basis of the given
inputs.

Return

A function would return the returning

value/control to the code or calling

function.

A procedure, on the other hand, would

return the control, but would not return any

value to the calling function or the code.

Call A function can be called using a procedure.
A procedure cannot be called using any

function.

Compilation
The compilation of a function occurs when

we call them in a program.

The compilation of the procedures needs to

occur once, and in case it is necessary,

these can be called repeatedly, and we

don’t have to compile them every single
time.

Expression A function must deal with expressions.
A procedure need not deal with

expressions.

1. Fundamentals of Subprograms

 Characteristics of Subprograms:

a. Each subprogram has a single entry point.

b. The calling program unit is suspended during the execution of the called subprogram, which

implies that there is only one subprogram in execution at any given time.

c. Control always returns to the caller when the subprogram execution terminates.

 Terminologies:

 1. Subprogram Call

 A subprogram call is the explicit request that a specific subprogram be executed.

Unit II
Structuring the Data, Computations and Program

4

2. Active Subprogram

 A subprogram is said to be active if, after having been called, it has begun execution but has

not yet completed that execution.

 3. Subprogram Header

 A subprogram header, which is the first part of the definition, serves several purposes.

 e.g.

 def adder parameters :

 This is the header of a Python subprogram named adder .

 Ruby subprogram headers also begin with def .

 The header of a JavaScript subprogram begins with function.

 In C, the header of a function named adder might be as follows:

 void adder (parameters)

 4. Body of Subprogram

 The body of subprograms defines its actions.

 In the C-based languages (and some others—for example, JavaScript) the body of a

subprogram is delimited by braces.

 In Ruby, an end statement terminates the body of a subprogram.

 As with compound statements, the statements in the body of a Python function must be

indented and the end of the body is indicated by the first statement that is not indented.

 5. Parameter Profile

 The parameter profile of a subprogram contains the number, order, and types of its formal

parameters.

6. Protocol

 The protocol of a subprogram is its parameter profile plus, if it is a function, its return type.

Unit II
Structuring the Data, Computations and Program

5

 7. Subprogram Declaration

 Subprogram declarations provide the subprogram’s protocol but do not include their bodies.
Function declarations are common in C and C++ programs, where they are called prototypes. In

most other languages (other than C and C++), subprograms do not need declarations, because there

is no requirement that subprograms be defined before they are called.

 8. Formal Parameters

 The parameters in the subprogram header are called formal parameters.

 9. Actual Parameters

 Subprogram call statements must include the name of the subprogram and a list of

parameters to be bound to the formal parameters of the subprogram. These parameters are

called actual parameters.

10. Positional Parameters

 The correspondence between actual and formal parameters or the binding of actual

parameters to formal parameters is done by position. Such parameters are called positional

parameters.

11. Keyword Parameters

 When lists are long, however, it is easy for a programmer to make mistakes in the order of

actual parameters in the list. One solution to this problem is to provide keyword parameters, in

which the name of the formal parameter to which an actual parameter is to be bound is specified

with the actual parameter in a call.

 e.g. Python functions can be called using this technique, as in

sumer(length = my_length, list = my_array, sum = my_sum)

where the definition of sumer has the formal parameters length, list, and sum.

 Some authors call actual parameters arguments and formal parameters just parameters.

Unit II
Structuring the Data, Computations and Program

6

2. Design Issues for Subprograms

 Following are the Design Issues for Subprograms:

1. Are local variables statically or dynamically allocated?

2. Can subprogram definitions appear in other subprogram definitions?

3. What parameter-passing method or methods are used?

4. Are the types of the actual parameters checked against the types of the formal parameters?

5. If subprograms can be passed as parameters and subprograms can be nested, what is the

referencing environment of a passed subprogram?

6. Can subprograms be overloaded?

7. Can subprograms be generic?

8. If the language allows nested subprograms, are closures supported?

 A closure is a nested subprogram and its referencing environment, which together allow the

subprogram to be called from anywhere in a program.

Unit II
Structuring the Data, Computations and Program

7

3. Local Referencing Environments

a. Nested Subprogram

 e.g. Javascript

b. External / Global Variable

c. Local Variable

 - Stack Dynamic Local Variable

Advantages:

i. Flexibility

ii. Supports Recursion

iii. Shared Memory

Disadvantages:

i. Time to allocate and deallocate

ii. Indirect Access

 - Static Local Variable

 Advantages:

i. No time wastage for allocation and deallocation

ii. Direct Access

 Disadvantages:

i. Do not support recursion

ii. Storage cannot be shared

Unit II
Structuring the Data, Computations and Program

8

4. Parameter passing methods.

i. Pass By Value / Call By Value

 When a parameter is passed by value, the value of the actual parameter is used to initialize

the corresponding formal parameter, which then acts as a local variable in the subprogram, thus

implementing in-mode semantics.

 ii. Pass By Result

 Pass-by-result is an implementation model for out-mode parameters.

 e.g. C# code

void Fixer(out int x, out int y) {

x = 17;

y = 35;

}

. . .

f.Fixer(out a, out a);

Unit II
Structuring the Data, Computations and Program

9

 iii. Pass By Value-Result

 Pass-by-value-result is an implementation model for inout-mode parameters in which actual

values are copied.

 iv. Pass By Reference

 Pass-by-reference is a second implementation model for inout-mode parameters.

 v. Pass By Name

 Pass-by-name is an inout-mode parameter transmission method.

 When parameters are passed by name, the actual parameter is, in effect, textually

substituted for the corresponding formal parameter in all its occurrences in the subprogram.

