Unit 3

Java as Object Oriented Programming Language-Overview
Fundamentals of JAVA, Arrays: one dimensional array, multi-dimensional array, alternative array
declaration statements ,String Handling: String class methods
Classes and Methods: class fundamentals, declaring objects, assigning object reference variables,
adding methods to a class, returning a value, constructors, this keyword, garbage collection, finalize()
method,
overloading methods, argument passing, object as parameter, returning objects, access control, static,

final, nested and inner classes, command line arguments, variable -length arguments.

Department of Computer Engineering

Toiic | Book To Refer

Herbert Schildt, "The Complete Reference
Java", 9th Ed, TMH,ISBN: 978-0-07-180856-

array, multi-dimensional array, alternative array 9

Fundamentals of JAVA, Arrays: one dimensional

declaration statements ,String Handling: String class
methods Programming With Java, 3rd Edition, E.
Classes and Methods: class fundamentals, declaring Balaguruswamy
objects, assigning object reference variables, adding
methods to a class, returning a value, constructors,
this keyword, garbage collection, finalize() method,

overloading methods, argument passing, object as
parameter, returning objects, access control, static,

final, nested and inner -classes, command line

arguments, variable -length arguments.

Herbert Schildt, "The Complete Reference

Java", 9th Ed, TMH,ISBN: 978-0-07-180856-
Classes and Methods: class fundamentals, declaring 9.

String Handling: String class methods

objects, assigning object reference variables, adding
methods to a class, returning a value, constructors,
this keyword, garbage collection, finalize() method,

overloading methods, argument passing, object as
parameter, returning objects, access control, static,
final, nested and inner classes, command line

arguments, variable -length arguments.

Department of Computer Engineering

Herbert Schildt, "The Complete Reference
Java", 9th Ed, TMH,ISBN: 978-0-07-180856-
9

Page No- 413-431

String Handling: String class methods

Department of Computer Engineering

Introduction to JAVA Programming

What is Java?

Java is a programming language and a platform. Java is a high level,

robust, object-oriented and secure programming language.

History of Java

Java was developed by Sun Microsystems (which is now the subsidiary of Oracle) in the year 1995.
James Gosling is known as the father of Java. Before Java, its name was Oak. Since Oak was

already a registered company, so James Gosling and his team changed the Oak name to Java.

Platform: Any hardware or software environment in which a program runs, is known as a

platform. Since Java has a runtime environment (JRE) and API, it is called a platform.

Java Version History

&995 qub ,&qq'l &99‘6 2000 2002 2005‘ 2005 7_0‘9 flo‘&b‘

Evolution

of
Java

< O

H Ll
o~ n
T ©
N &
- -

JDK Alpha & Beta
Java SE 7
Java SE 8

Features of Java

01 Simple

Object-Oriented]

'OYOYC

Platform independent]

|
ﬁ

Secure language]

Robust

¢

Architecture-neutral]

07 Interpreted language

Multithreaded language

OYOYO

Distributed language

0 Dynamic

Features of Java

PORTABLE

HIGH
PERFORMANCE

ROBUST

OBJECT-ORIENTED

FEATURES [BUZZWORDS) OF
JAVA

ARCHITECTURE
NEUTRAL

PLATFORM
INDEPENDENT

SECURE

Java is Simple

@® It is free from pointer due to this execution time of application is improved.
[Whenever we write a Java program without pointers then internally it is
converted into the equivalent pointer program].

@ It has Rich set of API (application protocol interface).

@® [t has Automatic Garbage Collector which is always used to collect un-
Referenced (unused) Memory location for improving performance of a Java
program.

@ It contains user friendly syntax for developing any applications.

JAVA Compiler and Interpreter

Java Life Cycle

Java Programs Normally Undergo Four Phases

Edit .
Compile
Load
Programmer
Writes Compiler creates
program Byte-codes from
program Class loader stores

Byte-codes in memor
Y Y Translate byte codes

Into machine language

The execution lifecycle of a Java application can be broadly divided into
three phases:

1.Compilation: The source code of the application is converted into bytecode
using the “javac” compiler.

2.Class Loading: The bytecode is loaded into memory and the necessary
class files are prepared for execution.

3. Bytecode Execution: The JVM executes the bytecode and the program

runs.

1. Java Bytecode is the intermediate representation of your Java code that is

executed by the Java Virtual Machine (JVM).

2. When you compile a Java program, the Java compiler (javac) converts
your code into bytecode, which is a set of instructions that the JVM can

understand and execute.

3.This bytecode is platform-independent, meaning the same Java program
can run on different devices and operating systems, a principle known as

"write once, run anywhere" (WORA).

Java is Object Oriented

@ Since it is an object-oriented language, it will support the following features:
O Class

Object

Encapsulation

Abstraction

Inheritance

O O O O O

Polymorphism

Java is Platform Independent

I|-||'| S Liv
_-‘ - - _' =
. .t - i
. - e i
h = i
..._-__“. . . . Ty
Ll] i

First.java

il

1. Java is platform-independent because it uses a virtual machine.

2. The Java programming language and all APIs are compiled into

bytecodes.

3. Bytecodes are effectively platform-independent. The virtual

machine takes care of the differences between the bytecodes for the

different platforms

JVM, JDK ,JRE

Difference between JDK, JRE and JVM

Java Dev<slopment Kit Java Runtime Environment

Java Virtual Machine

JDK is an acronym JRE is used to
for Java Development provide runtime
Kit. It physically environment. It is

exists. It contains JRE | the implementation

+ development tools. of JVM. It physically
exists.

JVM is an abstract
machine. Itis a
specification that
provides runtime
environment in which
java bytecode can be
executed.

JDK is a software development kit whereas JRE is a software bundle that allows Java program

to run, whereas JVM is an environment for executing bytecode.

JDK

JRE

-1 JVM

Development
Tools

—t Libraries

Let’s look at some of the important differences between JDK, JRE, and JVM.

1.JDK is for development purpose whereas JRE is for running the java programs.
2.JDK and JRE both contains JVM so that we can run our java program.

3JVM is the heart of java programming language and provides platform

independence.

At Compile Tlme

r - JIT Compiler
At Run Time 15 '

edurekal
The JIT compiler helps improve the performance of Java programs by compiling bytecodes into native machine code at
run time. The JIT compiler is enabled by default. When a method has been compiled, the JVM calls the compiled code
of that method directly instead of interpreting it.
Difference between JVM & JIT
**Java Virtual Machine is an interpreter that converts the bytecode into the machine's native language, whereas JIT
(Just In Time) is responsible for improving the environment of Java.

Java Is Secure

Uses runtime C++ Java Uses runtime -.I
environment of envircnment | OS
operating system Application Application s o]

J

JVM

Security in Applications

Java Is Secure

Source File Class File At runtime)
Windows

Hello.java

Bytecodes which are generated can run on any
machine which has the JIVM and are secure because
JVM itself checks the code at runtime.

hlac

Java is Robust

® Capable of handling run-time errors,
® Supports automatic garbage collection
® Exception handling, and

® Avoids explicit pointer concept.

Java is Architecture Neutral

g - o ey Mt
{= L o s - A
ool F .
1 4 '
AT :
- v -
h
AT, o

Tutorialdus.com

>

First.java

Java Is Architecture Interpreted

5 SR s X
% = -:".F'-. By
oy AL -
- v -
AT, -

Tutorialdus.com

>

First.java

Java is Multithreading

4 Multithreading in Java

Operating System

Java is Multithreading

@® Multithreaded means handling multiple tasks
simultaneously or executing multiple portions (functions)
of the same program in parallel.

® The code of java is divided into smaller parts and Java

executes them in a sequential and timely manner.

Java is Distributed

@® Multiple programmers at many locations to work

together on a single project.
® Support RMI (Remote Method Invocation) and E]JB (Enterprise

JavaBeans).
® Extensive library of classes for interacting, using TCP/IP
protocols such as HI'TP and FTP, which makes creating

network connections much easier than in C/C++.

ava Is Distributed

Client &
Client 7 Client 1

W
N e

CHent 2

S B et
Client 5 = \
m
Client 4 et
Client 7 Clinnt &

Client 1

—
N

Server &

Client 5 =

- Client 3
Cliemnt &

istrib Application U
Distributed Applicatio Client 7 Cileuik Client 1

T,

Application — ‘

Server 2

Client 2

o 1
o Client 3

Client 7 Client 8

Application —_— -

Server 3
—

Client 3

Client 2

Client 4

Java is Dynamic

® Classes are not loaded all at once.

® They jump into action only when an invoke operation executes
or some data about the class is needed in the memory.

® Java finalizes invoking instructions during runtime. Ex-

Runtime Polymorphism i.e function overriding.

Java Editions

J2SE
Java 2 Standard

Java standard edition
is use to develop
client-side
standalone
applications or
applets

J2ME
Java 2 Micro Edition

Java micro edition is
use to develop
applications for
mobile devices such
as cell phones

Java 2 Enterprise Edition

Java enterprise
edition is use to
develop server-side

applications such as
Java servlets and Java
Server Pages

First “Hello World”
program using JAVA

@Z__::{}puhm class Helloworld {
I - C,///§®

@- D plbhr: static void main(String[] args) {
/! Comment: printing output on console
System.out.println("Hello World from Java®);

“package sct”

@® Itis package declaration statement.
defines a namespace in which classes are stored.

to organize the classes based on functionality.

If you omit the package statement, the class names are put into the default package

java.lang, which has no name.

2. “public class HelloWorld”

@ This line has various aspects of java programming.

@ public: This is access modifier keyword which tells compiler access to class.
Various values of access modifiers can be public, protected,private or default
(no value).

@® class:

3. “Comments”

® Line comments: It starts with two forward slashes (//) and
continues to the end of the current line. Line comments do not
require an ending symbol.

@® Block comments: start with a forward slash and an asterisk (/*) and
end with an asterisk and a forward slash (*/).Block comments can

also extend

4. “public static void main (String [| args)™:

public: This keyword means that the method is accessible anywhere, including from outside the
class it’s declared in.

static: By using ‘static, we're saying that the main method can be run without needing an
instance of the class.

void: This keyword indicates that the main method doesn’t return any value.

main: ‘main’ is the name of this method. The JVM looks for a method with this name when it
starts running a program.

String[] args: This is an array of ‘String’ objects. It’s used to receive any command-line

arguments that were passed when the program was started.

5. System.out.println("Hello World from Java") :

@ System: It is the name of Java utility class.
@® out:Itis an object which belongs to System class.
@ println: It is utility method name which is used to send any String to the console.

@® “Hello World from Java”: It is String literal set as argument to println method.

ARRAY in JAVA Programming

JAVA: Introduction to Array Data Type

Array always starts from

the index 0

E.g.: array imdex 4 is

E.5

i y, 3 . holding a value of 200

2 | 20 | 21 |20

Each index in the array holds a
value

JAVA: Introduction to Array Data Type

@ Arrays in Java are homogeneous data structures implemented in Java
as objects.

@ Arrays store one or more values of a specific data type and provide
indexed access to store the same.

@ A specific element in an array is accessed by its index.

@ Arrays offer a convenient means of grouping related information.

JAVA: Introduction to Array Data Type

@® Obtaining an array is a two-step process.
O First, you must declare a variable of the desired array type
O Second, you must allocate the memory that will hold the array,

using new, and assign it to the array variable

JAVA: General Form of Java Array Initialization

The type determines what type
of data the array will hold

type var-name]];

Example:- int month days|[];

JAVA: General Form of Java Array Initialization

The type determines what type new is a special operator that
of data the array will hold allocates memory.

I I

type array-var = new type[size];

array-var is the array variable size specifies the number
that is linked to the array. of elements in the array

data type size of array

T '

int[]a= new int[S];

data type size of array

b 4 L

@ int al(l= new int[5];

Index has to be ghven in
sguare brackets

data type size of array

! i

® int[Ya= new int[J{1,2,3,4,5);

Index has to be given in
square brackets

JAVA: More About Array Initialization...

The type determines what type
of data the aray will hold

|

type var-name[] = {value1, value2, value3, value4,...};

L J
]

An array initializer is a list of comma-separated
expressions surrounded by curly braces. The commas
separate the values of the array elements

JAVA: More About Array Initialization...

data type size of array

v .

int[]a= Pl 2%, Ok

Index has to be given in
square brackets

=3 - N
0O|0|0]10]0

JAVA: Implementing an Array

class MyArray/{ OUTPUT
April has 30days
public static void main(String args|[]){
int month_days|[] = {31,28,31,30,31,30,31,30,31,30,31};
System.out.println("April has " + month_days[3] + days.");

J
J

JAVA: Accessing a Specific Element in a Java Array

This statement
assigns the value
90 to the second

element of
month_days

month_days[1] = 90;

public static void main(String args[]) {
int month_daysl[];
month_days = new int[12]; OUTPUT
month_days[0] = 31; April has 30days
month_days[1] = 28;
month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;
month_days[5] = 30;
month_days[6] = 31;
month_days[8] = 30;
month_days[9] = 31;
month_days[10] = 30;
month_days[11] = 31;
System.out.println("April has " + month_days[3] + " days.");
}
}

JAVA: Multidimensional Array

int Mul[][] = new int[4][5];

This allocates
a 4 by 5 array
and assigns it
to Mul.

JAVA: Multidimensional Array -Conceptually

edureka! Right index determines column.

— {00} {O}{1} {OH2} {O}{3} {OH4}

l

— {1}{o} @ {1H1} {132} (1}3} {1}{4}
Left index
determines row.

{2}{o} | {2H1} @ {2H2} (2}{3} ({2}{4}

l

- {3}0} | {3}1} (3H2} (343} (3}4}

l

class TwoDArray

{

// Creates a 2D array of integers, fills it with increasing
// integer values, then prints them out.

public static void main (String[] args)
{

int[][] multarry = new int[4][5];

int i,j,k=0;

// Load the table with values
for (i=0;1i < 4;i++)
for (j=0;j < 5; j++)
{
multarry[i][j]=k;
k++;

J

// Print the table

for (i=0;1 < 4;i++)

{

for (j=0;j < 5;j++)

{

System.out.print(multarry[i][j]+"

}

System.out.println();

OUTPUT
01234
06789
10111213 14
151617 18 19

");

JAVA: Multidimensional arrays representation of different data types.

0 1

lim: 11[1a=new 1ot [2102): J o[1 4

1 4]

2 x 7 dimensional int ariay

0 1
char []l[]la= new char[32]1[2]; 0 5 -
i g u

JAVA: Multidimensional arrays representation of different data types.

float [][la= new float[5][5]); 77 34 5.0 13 13

| 78 | 90 | 11 | 29 | 55

;| 20 3.0 7.8 038 9.9

1, (B b.6 8.8 2.3 2.7

4| 18 44 1.6 1.0 11

5 % 5 dimensional float array

Array Vs ArrayList

Sorting of objects in Array List

Stack Memaory

——

l Reference of obj 1

v
[
S]

é@é InterviewBit Reference = Address of

object in Heap memory

Array Vs ArrayList

Sorting values in Array

How Array look like? Array in memory

Array
0x1000
0x1001 Contiguous
0x1002 memory
0 1 2 3 4

| I | | | 0x1003

Indices G004

£8835 InterviewBit

JAVA: Passing Java Array to a Method

class PMethods|{
public static void display(int y[])
{
System.out.println(y[0]);
System.out.println(y[1]);
System.out.println(y[2]);

J

public static void main(String args|])

{
intx[]={1,23};
display(x); //Passed array x to method display
J
}

OUTPUT
1
2
3

Click Here
Java Interview Questions on Array

https://javaconceptoftheday.com/java-array-interview-questions-and-answers/

Memory Allocation
and

Java Garbage Collection

Java Heap Space

@ Used by Java runtime to allocate memory to Objects and JRE classes.

@® Any new Object is always created in Heap Space.

@® Garbage Collection runs on the heap memory to free the memory
used by objects that doesn’t have any reference.

@ All instance and class variables are also stored in the heap.

Java Stack Memory

Used for execution of a thread.

Store method specific values, and “references” to Objects being used in the method.
Stack memory is LIFO (Last-In-First-Out)

Whenever a method is invoked, a new block is created in the stack memory for the
method to hold local primitive values and reference to other objects in the method.
As soon as method ends, the block becomes unused and become available for
next method.

Stack memory size is very less compared to Heap memory.

public class Memory {

public static wvold main{string[] args) { // Line 1
int i=1; f/ Eine 2
Object obj = new Object(); // Line 3
Memory mem = new Memory(); // Line 4
mem.foo(obj); // Line 5

Yy /S Line 9

private wvoid foo(Object param) { // Line &6
String str = param.tostring();: //// Line 7

System.out.println(str);
Y // Line 8

Page 4

Stack Memory

str "‘
param “§—

fool)

mum+
obj -

int =1

main{)

Heap Memory

String Pool

|eva.lang. Objecti@s a1 9fd

-""r.- 4k

Memory

to§tring()

Java Runtime Memory

String Handling in Java

Creating String Iin Java

There are two ways to create a String in Java
* String literal

L
I_|.
=
b
i

"Welcome";

str2 = "Welcome™;

tring strl = new String({"kWelcome™);

i1
I
J
g

LA
+
=3
fsa
Il

new String("kWelcome™);

Does it make any difference? Well, yes!

String Pool Concept in Java (String

I | - Java Heap

String s1 = “Cat”;
String s2 = “Cat”;
‘String 53 = new String(“Cat”);

s1 == s3; //false

String Intern Pool maintained in Java Heap Space

Discussion: How many Strings are getting created
here?

String str = new string{ "Cat™);

String is Immutable in Java

String

llSkyll ; | ’h | Constant

Pool

String si1
String s2 = "Blue"

s1

Stack

Figure 1

String

String is Immutable in Java _ -

Pool

sl = s1 + s2;

Heap Stack

Figure 2

String Pool Concept in Java (String Interning)

String is immutable in Java

All Strings are stored in String Pool (also called String Intern Pool) allocated
within Java Heap Space

It is implementation of String Interning Concept.

String interning is a method of storing only one copy of each distinct string
value, which must be immutable.

Interning strings makes some string processing tasks more time- or space-
efficient at the cost of requiring more time when the string is created or
interned.

The distinct values are stored in a string intern pool.

Using new operator, we force String class to create a new String object in heap
space.

String Pool Concept in Java (String Interning)

public class InternExample{

public static void main(String args[]){

String s1=new String("hello");

String s2="hello";

String s3=sl.intern(); //returns string from pool, now it will be same as s2
System.out.println(s 1==s2);//false because reference variables are pointing to different instance

System.out.println(s2==s3);//true because reference variables are pointing to same instance

}}

java.lang.String API - Important

public class String

int
char
String
boolean
boolean
boolean
int

int

String(String s)

length()

charAt(int 1)

substring(int 1, int j)
contains(5tring substring)
startsWith(5tring pre)
endsWith(String post)
indexOf(String pattern)
indexOf(5tring pattern, int i)

create a string with the samie value as
number of characters

the character at index 7

characters at mdices 7 through (7-1)
does this string contain Substring?
does this strog start with pre

does this string end with post?

maex af first occurrenice of pattern

tnaex of first occurrence of pattern after i

java.lang.String API - Important

Mmethndc

String
int
String
String
String
Stringl]
boolean
nt

concat(String t)
compareTo(String t)
tolowerCase()

toUpperCase()
replaceAll(5tring a, String b)
split(5tring delimiter)
equals(Object t)

hashCode()

thus strimg with € appenaed

strimg comparison

this string, with lowercase letters

this string, with uppercuse lefrers

this string, with as replaced by bs

strivgs between occurrences of de lim7 tar
(5 this strimy’s vadue the same as ¢ 7

illH :hH'H:'.I' ||I1i'|'l!1 II.||'|!|"

java.lang.String APl - Examples

String a
String b
String c

o

innstance method call

refurn type

new String("now is");
new String("the time");
new String(" the"):;

return value

a.length()
a.charAt(4)
a.substring(2, 5)
b.startsWith("the")
a.indexOfF("is")
a.concat(c)
b.replace(™t","T")
a.splict™ ")
b.equals({c)

int
char
String
boolean
int
String
String
Stringl[]
boolean

6

‘I_i'l

T

true

4

"now is the"
"The Tim"™

java.lang.String APl - Examples

public class EqualsSample{
public static void main(String args[]){
String s1="string";
String s2="string";
String s3="swing";
String s4="* ABC

’

System.out.printin(sl.equals(s2)); // true because both
are equal

System.out.printin(sl.equals(s3)); //false because both
are not equal

java.lang.String APl - Examples

System.out.printin(sl.length()); // 5 is the length of s1
System.out.printin(sl.compareTo(s2)); //0O as both are equal

System.out.printin(sl.compareTo(s3)); //-3 as ‘t’ in sl is less than
‘W’ in s2

System.out.printin(s4.trim() +":wordpress.com");
//ABC.wordpress.com

System.out.printin(sl.concat(s4)); //string ABC

System.out.printin(sl.toUpperCase()); //STRING
1

java.lang.String APl - Examples

System.out.printin(s1l.charAt(4)); // n

}
}

Converting String to numbers and vice

versa
@® String to Number

O inti= Integer.parselnt(str);

O Integeri = Integer.valueOf(str);

O double d = Double.parseDouble(str);
O Double d = Double.valueOf(str);

Note: Both throw NumberFormatException If the String is not valid for

Converting String to numbers and vice

VErsa
® String to Boolean

O boolean b = Boolean.parseBoolean(str);

@® Any Type to String

O String s = String.valueOf(value);

Click Here
Java Interview Questions on String

https://javaconceptoftheday.com/java-string-interview-questions-and-answers/

Classes and Method

@® Core of Java.
@® Logical construct upon which the entire Java language is built

@ Defines the shape and nature of and object.

Class Fundamentals

@ A classis that it defines a new data type.

@® Once defined, this new type can be used to create objects of that type.

@ A classis a template for an object, and an object is an instance of a
class. Because an object is an instance of a class

@® Two word object and instance used interchangeably.

i

Th e G e n e ra | FO rm Of a class classname I

type instance-variablel ;
iype instance-variable2;
@® The data that it contains A
type instance-variableN;
and the code that
iype methodnamel (parameter-list) |
operates on that data // body of method

|
I

type methodname2(parameter-list) |

// body of method

|
I

type methodnameN(parameter-list) |
// body of method

|

The General Form of a Class

@® The data that it contains and the code that operates on that data
@® The data, or variables, defined within a class are called instance
variables

The code is contained within methods

Collectively, the methods and variables defined within a class are

called members of the class.

The General Form of a Class

@® Variables defined within a class are called instance variables
because each instance of the class (that is, each object of the class)
contains its own copy of these variables.

@ Thus, the data for one object is separate and unique from the data for

another.

The General Form of a Class

@ All methods have the same general form as main().
However, most methods will not be specified as static or public

the general form of a class does not specify a main() method.

Java classes do not need to have main() method. You only specify one if

that class is the starting point for your program.

Further ,some Kkinds of Java applications, such as applets, don’t

require a main() method at all.

A Simple Clas

/* B program that uses the Box olass.

Call this file BoxDemeo.java
*
class Box |
double width;
double height;
double depth;

}

A4 Thig class declares an object of Eyvpe Box,
claza BoxDemo |
public static wvoid main (String argslll |
Box myvbhox = new Box() :
double wvol;

!/ assign wvalues to mybox's instance wvariables
mybox.width = 10;

nybox. height = 20;

mybox . depth = 15;

SF compute volume of box
vol = mybox.width * mybox.helght * mnybox.depth;

System.out.println("Volume is " + wvol];

Declaring Objects

@® Obtaining objects of a class is a two-step process.

@ First, you must declare a variable of the class type. This variable does
not define an object. Instead,it is simply a variable that can refer to an
object.

@® Second, you must acquire an actual, physical copy

Declaring Objects

@® The new operator dynamically allocates (that is, allocates at run
time) memory for an object and returns a reference to it.

@ This reference is, more or less, the address in memory of the object
allocated by new

@® This reference is then stored in the variable. Thus, in Java, all class

objects must be dynamically allocated.

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten
like this to show each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

Statement

Box mybox;

image

mybox = new Box();

Effect

mybox

—- | WWidLh

mybox Height

Depth

Box object

Statement

Box mybox;

image

mybox = new Box();

Effect

mybox

—- | WWidLh

mybox Height

Depth

Box object

A Closer Look at new

@® The new operator dynamically allocates (that is, allocates at run
time) memory for an object.

@ It has this general form:

class-var = new classname ();

A Closer Look at new

@® The class name followed by parentheses specifies the constructor for

the class.

A constructor defines what occurs when an object of a class is created.

Constructors are an important part of all classes and have many
significant attributes.
@ Most real-world classes explicitly define their own constructors within

their class definition.

A Closer Look at new

@® if no explicit constructor is specified, then Java will automatically supply a default
constructor

@® Java’'s primitive types are not implemented as objects. Rather, they are implemented as
“normal” variables.

@® Advantage of new : program can create as many or as few objects as it needs during
the execution of your program.

@® memory is finite, it is possible that new will not be able to allocate memory for an object
because insufficient memory exists.

@ If this happens, a run-time exception will occur.

Assigning Object Reference Variables

Box bl
Box b2

bl; / Height Box object
Depth

b2

Assigning Object Reference Variables

'/"I'NULL
new Box() ; \

Box bl = —

Box b2 = bl; bl [Width

P / Height Box object
bl = null;] Depth

b2

Assigning Object Reference Variables

REMEMBER
When you assign one object reference variable to another
object reference variable, you are not creating a copy of the

object, you are only making a copy of the reference.

Introducing Methods

general form of a method:

Iype na f.u.r-'(_j;mwm._«*fe*r—.’fﬁ.ﬂ [
// body of method

}

Adding a Method to the Class

e In fact, methods define the interface to most classes. This allows the
class implementor to hide the specific layout of internal data
structures behind cleaner method abstractions.

e In addition to defining methods that provide access to data,you can

also define methods that are used internally by the class itself.

olags BoxDemad |
public static void main(String arga[]) |

// Thiz program includes a method ingide the hox class. Ao bR T B L))
Beax I'I'I'}'I"r}l'{? = hnew Baxi();

clas B { // assign walues to myboxl's instance variables
double width; myboxl.width = 10;
double height; myboxl .height = 20}

double depth. myboxl . depth = 15;

/* asaign different values to myboxZ's

// display volume of a box o Uﬁt:lilgfh“ﬂlidblﬂ u
void 'l.l"El].LlTI'I.E“ ': mybowa . helght = &; megE
gystem out, print ("Velume 18 *); mybox2 _dapth = 9 bsslziz ol

Syatem.out println{width * height + depth) . O D VN ST T T
] myboxl cvolums [;

}

ff diaplay wolume of second box

mykoxd .volums () ¢

Adding a Method to the Class

e The instance variables width, height, and depth are referred to
directly,

e without preceding them with an object name or the dot operator.

e When an instance variable is accessed by code that is not part of the
class in which that instance variable is defined, it must be done through

an object, by use of the dot operator.

Returning a Value

e The type of data returned by a method must be compatible with the
return type specified by the method.

® For example, if the return type of some method is boolean , you could not
return an integer.

® The variable receiving the value returned by a method (such as vol
in this case) must also be compatible with the return type specified for

the method

Returning a Value

nlass Box |
double width;
double helght;
double depth;

// compute and return volume

double volume(] |
return width * height * depth;
l

!

class BowDemod |
public static vold main{String args(]l |
Box myboxl = new Enxrj;fn1age
Box myboX2 = New BoX () ;o
double wol;

// aseign values to myboxl's instance variables
myboxl.width = 1d;

myboxl . height = 20;

myboxl.depth = 15;

/* asglgn different values to myboxd's
ingtance variahlem */

myboxZ.width = 3

myboxZ height = 6;

mybox2 . depth = 9;

// get volume of firet box
vol = myboxl. wvolume();
System.out . println(*velume is " + voli;

A get volume of second hox
vol = mybox2 . wolumel)
Eyatem.out.println(*Vvelums is " 4 wvoli;

Adding a Method That Takes

Parameters
; ; . int x, v;
iBE aguREsiinE 2 X = square(5); // x equals 25
{ . . X = aquare(9); // x equals 81
refturn 1 * 1; Y = 2;
} X = square(y); // x equals 4

Returning a Value

@® A parameter is a variable defined by a method that receives a value

when the method is called.

For example, in square() , i is a parameter.

An argument is a value that is passed to a method when it is invoked.
For example, square(100) passes 100 as an argument.

@® Inside square(), the parameter i receives that value.

Modified program using parameterized methods

// This program uces a paransterized method.

vlass Box |
deajbhle widbhy
double heighk;
double depth;

4 comgute and return W luke
double volom=i] |
return width * height * depth;

ff o aEts dimenglong al box

vold sectCdimidouble w, double k, double db
width = &y
hsight = |i;
depth - A;

I

clags BoxDemos |
publie scatlc vold malniscring avge[]) |
Box mybcxl = nes Bowl)
Eox mybowi = new Boof)
double wol;

A initialize each bok
myboxl .gekDimi{l0, 20, 15| ;
myboxz, sebDimil, &, 2i;

{/ get volume of firat box
vol = myboxl.wolumaf]
Syoten.cub.printlnd volume in = + vol);

£ get voluns of eeccnd box
vol = nyboxZz.wlume(];
Syoten.cut printlni*Volupe i " + wol);

Constructor

@® A constructor initializes an object immediately upon creation.

@® It has the same name as the class in which it resides and is syntactically
similar to a method.

@® Once defined, the constructor is automatically called when the object is

created, before the new operator completes.

Constructor

S¥ Here, Box usss & conetructor to initialize Ths

* i

dimensions of a box.

clags Box

|

double width;
doable helght;
double depth;

/f Thies is the constructor for Box.
Boxi)
Syetem.out .println{"Constructing Box"};
width - 14;
height = 10;
depth = 10;
!

S computs and return volums
double wvolumel) |
raturn width * height * depth;

}

class BoxD