Agile Processes: eXtreme
Programming

Data taken from
Ganesh.Sambasivam@isoftplc.comak

SDLC 3.0 book; Google;
Scattered Notes
Course Textbook

mailto:Ganesh.Sambasivam@isoftplc.comak

XP's Four Values

Communication. Most projects fail because of poor
communication. So implement practices that force
communication in a positive way.

Simplicity. Develop the simplest product that meets
the customer’s needs

Feedback. Developers must obtain and value feedback
from the customer, from the system, and from each other.

- The same as standard Agile values: value customer
collaboration over contract negotiation.

Courage. Be prepared to make hard decisions that
support the other principles and practices.

Extreme Programming

* XP is based on these
- four values and
- twelve practices
- have been extended various ways since XP’s introduction

* Extreme Programming (XP) takes an ‘extreme’ approach to

iterative development.
>$New versions may be built several times per day;
> Increments are delivered to customers approx. every 2 weeks;

>< All tests must be run for every build and the build is only accepted if
tests run successfully.

Chapter 3 Agile software development 15

XP and Agile Principles

>¢ Incremental development is supported through small,
frequent system releases.

> Customer involvement means full-time customer
engagement with the team.

>¢ People not process through pair programming,
collective ownership and a process that avoids long
working hours.

>¢ Change supported through regular system releases.

>¢ Maintaining simplicity through constant refactoring of
code.

Chapter 3 Agile software development 16

The Extreme Programming Release Cycle

Celect user
sharies tar thiz

retlease

Break dowin
stofies to tasks

Develop/integrate’
test software

User Stories — coming...

Chapter 3 Agile software development 17

Requirements Scenarios

>¢ In XP, a customer or user is part of the XP team and is
responsible for making decisions on requirements.

>¢ User requirements are expressed as scenarios (via use
cases) or user stories.

>¢ These (User Stories) are often written on cards and the
development team break them down into implementation
tasks.

> These tasks are the basis of schedule and cost estimates.

> The customer chooses the stories for inclusion in the next
release based on their priorities and the schedule
estimates.

Chapter 3 Agile software development 20

XP Fundamentals by Kent Beck

Write unit tests before programming; keeping all tests running
all times.

Integrating and testing the whole system--several times a day.

Producing all software in pairs, two programmers at one
screen.

Starting projects with simple design. Simple design can
evolve.

Putting a minimal system into production quickly and growing
it in whatever directions prove most valuable.

XP Core Practice #1- The Planning Game

Business and development cooperate to produce max business
value as quickly as possible.
The planning game:

- Business comes up with a list of desired features.

- Each feature is written out as a User Story,
* feature has a name, and is described in broad strokes what is required.

- User stories are typically written on 4x6 cards. (You saw a variation in
your book)

- Development estimates how much effort each story will take, and how
much effort the team can produce in a given time interval.

- Business then decides
* order of stories to implement,
* And when and how often to produce a production release of the system.

XP — Core Practice #2: Simple Design

* Simplest possible design to get job done.

* Requirements will change tomorrow, do
what's needed to meet today's requirements

* Design in XP is not a one-time; itisan “all-
the-time” activity. Have design steps in
- release planning
- iteration planning,

- teams engage in quick design sessions and
design revisions through refactoring,

* through the course of the entire project.

XP — Core Practice #3: Metaphor

Extreme Programming teams develop a common
vision of how the program works, which we call the
"metaphor".

At its best, the metaphor is a simple evocative
description of how the program works.

XP teams use

common system of names to be sure that everyone
understands how the system works

and where to look to find the functionality you're
looking for,

or to find the rightdplace to put the functionality
you're about to add.

XP — Core Practice #4-:
Simple Design

« Always use the simplest possible design that gets the job
done.

« The requirements will change tomorrow, so only do
what's needed to meet today’s requirements.

XP — Core Practice #5: Continuous Testing

e XP teams focus on validation of the
software at all times

* Programmers develop software by
writing tests first, and then code that
fulfills the requirements reflected in the
tests.

* Customers provide acceptance tests
that enable them to be certain that the
features they need are provided.

XP — Core Practice #6: Refactoring

e XP Team Refactor out any duplicate
code generated in a coding session.

* Refactoring is simplified due to
extensive use of automated test
cases.

XP — Core Practice #7:. Pair Programming

* All production code is written by two programmers
sitting at one machine.
- This practice ensures that all code Is reviewed as it is

wr(i;lcten and results in better Design, testing and better
code.

* Some programmers object to pair programming
without ever trying it.

- It does take some practice to do well, and you need to do
it well for a few weeks to see the results.

- Ninety percent offprogrammers who learn pair
programming prefer it, so it is recommended to all teams.
* Pairing, in addition to providing better code and
tests, also serves to communicate knowledge
throughout the team.

Pair Programming

>¢ In XP, programmers work in pairs, sitting together to
develop code.

>¢ This helps develop common ownership of code and
spreads knowledge across the team.

>¢ |t serves as an informal review process as each line of
code is looked at by more than 1 person.

>¢ It encourages refactoring as the whole team can benefit
from this.

> Measurements suggest that development productivity
with pair programming is similar to that of two people
working independently.

Chapter 3 Agile software development 34

Pair Programming

>¢ In pair programming, programmers sit together at the
same workstation to develop the software.

>¢ Pairs are created dynamically so that all team members
work with each other during the development process.

>¢ The sharing of knowledge that happens during pair
programming is very important as it reduces the overall
risks to a project when team members leave.

>¢ Pair programming is not necessarily inefficient and there
IS evidence that a pair working together is more efficient
than 2 programmers working separately.

Chapter 3 Agile software development 35

Advantages of Pair Programming

>¢ It supports the idea of collective ownership and
responsibility for the system.
>¢Individuals are not held responsible for problems with the code.
Instead, the team has collective responsibility for resolving these
problems.
>¢ It acts as an informal review process because each line
of code is looked at by at least two people.

>¢ It helps support refactoring, which is a process of
software improvement.

>Where pair programming and collective ownership are used,
others benefit immediately from the refactoring so they are likely
to support the process.

Chapter 3 Agile software development 36

XP — Core Practice #8: Collective Code
Ownership

* No single person "owns" a module.

* Any developer is expected to be able
to work on any part of the codebase
at any time.

XP — Core Practice #9:
Continuous Integration

* All changes are integrated into the codebase at least daily.

* Unit tests have to run 100% both before and after integration.
- Infrequent integration leads to serious problems on a project.

* Although integration is critical to shipping good working code, the
team is not practiced at it, and often it is delegated to people not
familiar with the whole system.

* Problems creep in at integration time that are not detected by
any of the testing that takes place on an un-integrated system.

* Code freezes mean that you have long time periods when the
Brogrammers could be working on important shippable features,
ut that those features must be held back.

XP — Core Practice #10: 40-hour Week

* Programmers go home on time.

- In crunch mode, up to one week of
overtime is allowed.

* Multiple consecutive weeks of
overtime are treated as a sign that
something is very wrong with the
process and/or schedule.

XP — Core Practice

11: On-Site Customer

* Development team has continuous
access to the customer who will
actually be using the system.

* For initiatives with lots of customers,
a customer representative (i.e.
Product Manager) will be designated
for Development team access.

XP — Core Practice #12: Coding Standards

* Everyone codes to the same standards.

* The specifics of the standard are not
important: what is important is that all
of the code looks familiar, in support of
collective ownership.

XP on your own — Supplemental.

XP Values — Summarized.

*XP Is a values-based methodology. The
values are Simplicity, Communication,
Feedback and Courage.

* XP’s core values:best summarized in
the following statement by Kent Beck:
Do more of what works and do less
of what doesn’t.

Highlights of the four values itemized:

* Simplicity encourages:
- Delivering the simplest functionality that
meets business needs

- Designing the simplest software that supports
the needed functionality

- Building for today and not for tomorrow

- Writing code that is easy to read, understand,
maintain and modify

Highlights of the four values itemized:

* Communication is accomplished by:
- Collaborative workspaces
- Co-location of development and business space
- Paired development
- Frequently changing pair partners
- Frequently changing assignments

&% Dub

ICc status displays

- Short standup meetings

- Unit tests, demos and oral communication, not
documentation

Highlights of the four values itemized:

* Feedback is provided by:
- Aggressive iterative and incremental releases
- Frequent releases to end users
- Co-location with end users
- Automated unit tests
- Automated functional tests

- Courage is required to:
* Do the right thing in the face of opposition
* Do the practices required to succeed

Conclusion

Extreme Programming is not a complete template
for the entire delivery organization.

Rather, XP is a set of best practices for managing
the development team and its interface to the
customer.

As a process it gives the team the ability to grow,
change and adapt as they encounter different
applications and business needs.

And more than any other process we have
encountered Extreme Programming has the power
to transform the entire delivery
organization, not just the development team.

Extreme Programming Overview

Team Proctces

«¥Whole team sits together in one room
«Work at a sustainable paca

sIntegrate many times per day

+5Share a common vision and vocabulary

team Interaction
An XP Room

Dynamic pairs write all production code

e B

overall schedule

||—| HHH | | HHHH
HF It. It It Helease HF It IL. IL Helease

RP=Release Planning {1-3 weeks)
It.= Iteration (fixed length, 1-2 waaks)

«Aeflect regulary BG =) Relaasa to usars evary 1-3 months
«Converge on a coding standard Any pair can change any coda ! O O 1
release planning = iteration planning
1
p.:.iTF, f Release Plan [, | 7 i Yesierday % Weather:
Eagfd E L1z IS @’— Selact as many
Stofies ints s wara
programmer I'l1 -, T '\ ' Eﬂ ; .
@ customer splits »s [EBEEB finishad last iteration
a— I =|=| I
B m
estimate™]n poi 4] 1ASKS | N
welly per iteration Customer selects storas, tﬂmiﬂsﬂ o it n -
most imporiant first - = ﬂ -
. ool ST coumt
» (|
. programming O
O Refactoring

Design Phiosophy
«Design is evolutionary and emesgent

«Pay as you go: Build just enough to meet
today*s requirements

«Keep design as simple as possible (but no simplar}

«High quality is both a sida effect and an
anabling factor

» The codae says sverything *once and only once®

Incremental Test-First Programming

pleman
just enough to

pass

Cycle takes 5-15 minutes

Stepwise design improvement
via safe transfommations

A B A B
fl) ()

Bxampla: Move Method

Copyright 2002, Wilkam C. Wake All rights msaned
WilanWekeFaomorg hitpweawaocp 123 .com

	Agile Processes: eXtreme Programming
	XP's Four Values
	Extreme Programming
	XP and Agile Principles
	The Extreme Programming Release Cycle
	Requirements Scenarios
	XP Fundamentals by Kent Beck
	XP Core Practice #1- The Planning Game
	XP – Core Practice #2: Simple Design
	XP – Core Practice #3: Metaphor
	XP – Core Practice #4: Simple Design
	XP – Core Practice #5: Continuous Testing
	XP – Core Practice #6: Refactoring
	XP – Core Practice #7: Pair Programming
	Pair Programming
	Slide 16
	Advantages of Pair Programming
	XP – Core Practice #8: Collective Code Ownership
	XP – Core Practice #9: Continuous Integration
	XP – Core Practice #10: 40-hour Week
	XP – Core Practice #11: On-Site Customer
	XP – Core Practice #12: Coding Standards
	XP on your own – Supplemental.
	XP Values – Summarized.
	Highlights of the four values itemized:
	Slide 26
	Slide 27
	Conclusion
	PowerPoint Presentation

