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Three Levels of Learning

• Learning new skills
– Following: “one procedure that works”, “at 

least this thing works”
– Detaching:”when does it break down?” “learn 

limits of procedure”, “adapt it”, “when is it 
appropriate?” Survey paper.

– Fluent:”irrelevant whether following a 
particular technique”, ”knowledge has become 
integrated”.
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The Three Levels and 
Methodology

• Methodology: a series of related methods 
and techniques (Miriam-Webster)

• Level 1: processes, techniques and 
standards in detail. Detailed templates in 
RUP servel level 1 audience. 
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Three Levels of Methodology

• Level  2/3: The Pragmatic Programmer: 
identifies techniques that a practitioner uses. 
A useful library of ideas but the beginner 
finds it lacking specific rules.

• Avoid level mixup! It confuses.
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Shu-Ha-Ri

• Three levels are known in other skill areas: 
Aikido (self defense technique)

• Shu: learn. Build technical foundation for 
the art. Single instructor.

• Ha: detach. Understand meaning and 
purpose; not just repetitive practice.

• Ri: transcend. Practitioner; original thoughts
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A Cooperative Game of 
Invention and Communication

• A fruitful way to think about software 
development.

• Games used by mathematicians and 
corporate strategists.

• Kinds of games: zero-sum, positional, 
competitive, cooperative, finite, …
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Software Development

• Group game

• Non-zero-sum: multiple winners and losers.

• Cooperative

• Goal-seeking

• Finite
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Infinite Games

• Infinite games: organizations, corporations 
and countries, a person’s profession.

• Do well in one game to be well positioned 
for the next one.
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Software and Rock Climbing

• Best comparison partner
• Cooperative and goal seeking

– How well they climbed together
– How much they enjoyed themselves
– Reach the top?

• Load bearing
– Climbers must support their weight. Software 

must run.
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Software and Rock Climbing

• Team

• Individuals with talent

• Skill sensitive

• Training

• Tools

• Resource-limited: before nightfall or the 
weather changes.
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Software and Rock Climbing

• Plan

• Improvised
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A Game of Invention and 
Communication

• Software development: group game which 
is goal seeking, finite and cooperative

• Team: sponsor, manager, usage specialists, 
designers, testers and writers

• Next game: maintenance, build an entirely 
different system
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Cooperative Game of Invention 
and Communication

• Measure of quality as a team: how well they 
cooperate and communicate during game.

• What are the moves of the game:
– There is nothing in the game but people’s ideas 

and the communication of those ideas to their 
colleages (including the sponsor) and to the 
computer.



 SE/Agile 14

Emotions, wishes and thoughts

• The task facing the developers:
– They are working on a problem they don’t fully 

understand and that lives in emotions, wishes and 
thoughts and that changes as they proceed.

– They need to understand.
• Problem space.

• Imagine some mechanism in a viable technology space.

• Express in an executable language which lacks many features 
of expression to a system that is unforgiving of mistakes.
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What is 
software development?

• Software Development is a resource-
limited) cooperative game of invention and 
communication. 
– The primary goal of the game is to deliver 

useful, working software.
– The secondary goal of the game is to set up for 

the next game. The next game may be to alter 
or replace the system or to create a neighboring 
system. 

Not many people have articulated this before
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Software and Engineering

• Considering software 
development as a game with 
moves is profitable.
– Gives us a way to make meaningful 

decisions on a project.

• In contrast: speaking of software 
development as engineering or 
model building does not help.
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Engineering

• People mostly use engineering to create a 
sense of guilt for not having done enough of 
something, without being clear of what that 
something is.

• Dictionary: The application of science and 
mathematics by which the properties of 
matter and the sources of energy in nature 
are made useful to man (Webster’s Dic.).
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What is “doing engineering”

• In my experience: involves creating a trade-
off solution in the face of conflicting 
demands.

• Also applies to software development.
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Confusing act and outcome

• Outcome: The factory, which is run while 
specific people watch carefully for 
variations in quantity and quality of the 
items being manufactured.

• Act: ill-defined creative process the 
industrial engineer goes through to invent 
the manufacturing plant.
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More like Engineering?

• When people say: “Make software 
development more like engineering” they 
often mean, “Make it more like running a 
plant, with statistical quality control”.

• But: running the plant is not the act of doing 
engineering.
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Look up previous solutions

• The other part of “doing engineering”

• Civil engineers are not supposed to invent 
new structures.
– Take soil samples and use the code books to 

look for the simplest structure that handles the 
required load over the given distance building 
on the soil at hand.

– Centuries of tabulation of known solutions
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Fits marginally

• This only fits marginally the current state of 
software development

• We are still in the stage where there is 
competition between designs.

• Technologies are changing fast that few 
code books exist

• Today there are more variations between 
systems than there are commonalities.
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Return

• Return to consider engineering as thinking 
and making trade-offs.
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Software and Model Building

• Ivar Jacobson: “software development is 
model building”

• Leads to inappropriate project decisions
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Interesting part not in models

• If software development were model 
building, then the valid measure of the 
quality of the software or of the 
development process would be the quality 
of the models (fidelity, completeness)
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But successful project teams say

• The interesting part of what we want to 
express doesn’t get captured in those 
models. The interesting part is what we say 
to each other while drawing on the board.

• We don’t have time to create fancy or 
complete models

• Paying attention to the models interfered 
with developing the software
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Sufficiency

• The work products of the team should be 
measured for sufficiency with respect to 
communicating with the target group.

• It does not matter if incomplete, incorrect 
syntax, … if they communicate sufficiently 
to the recipients.
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Modeling as team 
communication

• Can be too much or too little.

• How much modeling to do? Subject of this 
book.
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Programmers as Communications 
Specialists

• Game of communication: different light on 
programmers …

• Stereotyped as noncommunicative individuals 
who like to sit in darkened rooms

• High acceptance of programming in pairs … 
Programmers thought they would not like it but 
they like it! (Extreme Programming)
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Game of invention

• So far not as a game of communication

• Interest of programmers to discuss 
programming matters gets in the way of 
them discussing business matters with 
sponsors, users and business experts.
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Universities

• Can reverse the general characteristics by 
creating software development curricula 
that contain more communication-intensive 
courses

• Attracts different students (University of 
Aalborg, Denmark).
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Gaming Faster

• We should not expect orders of magnitude 
improvement in program production.

• As much as programming languages may 
improve, programminvg will still be limited 
by our ability to think through the problem 
and the solution.
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Analogy

• Two other fields of thought expression
– Writing novels
– Writing laws: Lawyers won’t get exponentially 

faster at creating contracts and laws!



 SE/Agile 34

Diminishing Returns

• Because a software development project is 
resource limited, spending extra to make an 
intermediate work product better than it 
needs to be for its purpose is wasteful.
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What is 
software development?

• Software Development is a resource-
limited) cooperative game of invention and 
communication. 
– The primary goal of the game is to deliver 

useful, working software.
– The secondary goal of the game is to set up for 

the next game. The next game may be to alter 
or replace the system or to create a neighboring 
system. Not many people have articulated this before
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Peter Naur

Programming as Theory Building

From Computing: A Human Activity

(1992, ACM Press)
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What goes on in software 
development? Intro.

• Most accurate account

• Quality is related to the match between the 
theory of the problem and the theory of the 
solution.

• The designer’s job is not to pass along the 
design but the theories that drive the design.
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What is programming

• Should be regarded as an activity by which 
the programmers form or achieve a certain 
kind of insight, a theory, of the matters at 
hand.

• Not as a production of a program and other 
texts.
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Programming and the 
Programmer’s Knowledge

• Programming = the whole activity of design and 
implementation 

• Programming = building up knowledge
• What kind of knowledge?
• A theory: a person who has or posses a theory 

knows how to do certain things and can support 
the actual doing with explanations, justifications 
and answers to queries.
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Theory transcends documentation 
in at least 3 essential ways

• How are affairs of the world mapped into the 
program text? For any aspect of the world the 
programmer can state its manner of mapping into 
the program text. [AOSD]

• Can support the program text with some 
justification.

• Is able to respond constructively to any demand 
for a modification. Similarity of new demand to 
similarities already in the system.
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Problems and Costs of Program 
Modifications

• Cost savings by modifying existing program 
rather starting from scratch.

• Cheaper? Not supported by other 
complicated man-made constructions: 
bridges, buildings, etc. Often demolish and 
rebuild is most economical.

• Program modification is just text editing?
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Program flexibility

• Build into the program operation facilities 
that are not immediately demanded.

• May be expensive.
– AOSD: 

• extend program by addition not modification.

• Works best if program is very systematically 
organized (easier to write pointcuts).
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Similarity

• Similarity:
– Requirements for existing solution

– Requirements for new demands

• To see the similarities we need to understand the 
“theory” behind the existing solution.

• Person having the theory must already be prepared 
to respond to questions that give rise to program 
modifications (theory stays the same).
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Decay

• Decay of program text if people are making 
modifications without understanding theory 
behind the program.

• We want theory conforming modifications 
to the program text. Otherwise we get 
unintegrated patches.
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Life cycle of a program

• Birth: building of theory.
• Life: programmer team possessing theory remains 

in active control of the program.
• Death: programmer team is dissolved.
• Revival: rebuilding of its theory by a new 

programmer team.
• New programmers need to work in close contact 

with programmers who have theory.
• Start from scratch?
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Method and theory building

• Method
– Set of work rules
– Which notations/languages
– Documents to produce

• Theory cannot be expressed
– No right method

• Contradiction?
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Software Development

• Should be based on scientific manners?
– Are scientific methods helpful to scientists? Debatable.

– Not contradicted by such works as Polya’s on problem 
solving (How to solve it and Patterns of Plausible 
Inference).

• Does not present a method on how to proceed.

• A collection of suggestions aiming at stimulating the mental 
activity of the problem solver.

• Highly relevant to programming.
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Dismissal of method

• Have methods been successful?

• Controlled experiments would be very 
expensive.

• AOSD
– Is it a method? Yes, e.g. combined with 

Extreme Programming.
– Do we need a controlled experiment? No!
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