
 SE/Agile 1

Agile Software Development

Alistair Cockburn

Addison Wesley

 SE/Agile 2

Three Levels of Learning

• Learning new skills
– Following: “one procedure that works”, “at

least this thing works”
– Detaching:”when does it break down?” “learn

limits of procedure”, “adapt it”, “when is it
appropriate?” Survey paper.

– Fluent:”irrelevant whether following a
particular technique”, ”knowledge has become
integrated”.

 SE/Agile 3

The Three Levels and
Methodology

• Methodology: a series of related methods
and techniques (Miriam-Webster)

• Level 1: processes, techniques and
standards in detail. Detailed templates in
RUP servel level 1 audience.

 SE/Agile 4

Three Levels of Methodology

• Level 2/3: The Pragmatic Programmer:
identifies techniques that a practitioner uses.
A useful library of ideas but the beginner
finds it lacking specific rules.

• Avoid level mixup! It confuses.

 SE/Agile 5

Shu-Ha-Ri

• Three levels are known in other skill areas:
Aikido (self defense technique)

• Shu: learn. Build technical foundation for
the art. Single instructor.

• Ha: detach. Understand meaning and
purpose; not just repetitive practice.

• Ri: transcend. Practitioner; original thoughts

 SE/Agile 6

A Cooperative Game of
Invention and Communication

• A fruitful way to think about software
development.

• Games used by mathematicians and
corporate strategists.

• Kinds of games: zero-sum, positional,
competitive, cooperative, finite, …

 SE/Agile 7

Software Development

• Group game

• Non-zero-sum: multiple winners and losers.

• Cooperative

• Goal-seeking

• Finite

 SE/Agile 8

Infinite Games

• Infinite games: organizations, corporations
and countries, a person’s profession.

• Do well in one game to be well positioned
for the next one.

 SE/Agile 9

Software and Rock Climbing

• Best comparison partner
• Cooperative and goal seeking

– How well they climbed together
– How much they enjoyed themselves
– Reach the top?

• Load bearing
– Climbers must support their weight. Software

must run.

 SE/Agile 10

Software and Rock Climbing

• Team

• Individuals with talent

• Skill sensitive

• Training

• Tools

• Resource-limited: before nightfall or the
weather changes.

 SE/Agile 11

Software and Rock Climbing

• Plan

• Improvised

 SE/Agile 12

A Game of Invention and
Communication

• Software development: group game which
is goal seeking, finite and cooperative

• Team: sponsor, manager, usage specialists,
designers, testers and writers

• Next game: maintenance, build an entirely
different system

 SE/Agile 13

Cooperative Game of Invention
and Communication

• Measure of quality as a team: how well they
cooperate and communicate during game.

• What are the moves of the game:
– There is nothing in the game but people’s ideas

and the communication of those ideas to their
colleages (including the sponsor) and to the
computer.

 SE/Agile 14

Emotions, wishes and thoughts

• The task facing the developers:
– They are working on a problem they don’t fully

understand and that lives in emotions, wishes and
thoughts and that changes as they proceed.

– They need to understand.
• Problem space.

• Imagine some mechanism in a viable technology space.

• Express in an executable language which lacks many features
of expression to a system that is unforgiving of mistakes.

 SE/Agile 15

What is
software development?

• Software Development is a resource-
limited) cooperative game of invention and
communication.
– The primary goal of the game is to deliver

useful, working software.
– The secondary goal of the game is to set up for

the next game. The next game may be to alter
or replace the system or to create a neighboring
system.

Not many people have articulated this before

 SE/Agile 16

Software and Engineering

• Considering software
development as a game with
moves is profitable.
– Gives us a way to make meaningful

decisions on a project.

• In contrast: speaking of software
development as engineering or
model building does not help.

 SE/Agile 17

Engineering

• People mostly use engineering to create a
sense of guilt for not having done enough of
something, without being clear of what that
something is.

• Dictionary: The application of science and
mathematics by which the properties of
matter and the sources of energy in nature
are made useful to man (Webster’s Dic.).

 SE/Agile 18

What is “doing engineering”

• In my experience: involves creating a trade-
off solution in the face of conflicting
demands.

• Also applies to software development.

 SE/Agile 19

Confusing act and outcome

• Outcome: The factory, which is run while
specific people watch carefully for
variations in quantity and quality of the
items being manufactured.

• Act: ill-defined creative process the
industrial engineer goes through to invent
the manufacturing plant.

 SE/Agile 20

More like Engineering?

• When people say: “Make software
development more like engineering” they
often mean, “Make it more like running a
plant, with statistical quality control”.

• But: running the plant is not the act of doing
engineering.

 SE/Agile 21

Look up previous solutions

• The other part of “doing engineering”

• Civil engineers are not supposed to invent
new structures.
– Take soil samples and use the code books to

look for the simplest structure that handles the
required load over the given distance building
on the soil at hand.

– Centuries of tabulation of known solutions

 SE/Agile 22

Fits marginally

• This only fits marginally the current state of
software development

• We are still in the stage where there is
competition between designs.

• Technologies are changing fast that few
code books exist

• Today there are more variations between
systems than there are commonalities.

 SE/Agile 23

Return

• Return to consider engineering as thinking
and making trade-offs.

 SE/Agile 24

Software and Model Building

• Ivar Jacobson: “software development is
model building”

• Leads to inappropriate project decisions

 SE/Agile 25

Interesting part not in models

• If software development were model
building, then the valid measure of the
quality of the software or of the
development process would be the quality
of the models (fidelity, completeness)

 SE/Agile 26

But successful project teams say

• The interesting part of what we want to
express doesn’t get captured in those
models. The interesting part is what we say
to each other while drawing on the board.

• We don’t have time to create fancy or
complete models

• Paying attention to the models interfered
with developing the software

 SE/Agile 27

Sufficiency

• The work products of the team should be
measured for sufficiency with respect to
communicating with the target group.

• It does not matter if incomplete, incorrect
syntax, … if they communicate sufficiently
to the recipients.

 SE/Agile 28

Modeling as team
communication

• Can be too much or too little.

• How much modeling to do? Subject of this
book.

 SE/Agile 29

Programmers as Communications
Specialists

• Game of communication: different light on
programmers …

• Stereotyped as noncommunicative individuals
who like to sit in darkened rooms

• High acceptance of programming in pairs …
Programmers thought they would not like it but
they like it! (Extreme Programming)

 SE/Agile 30

Game of invention

• So far not as a game of communication

• Interest of programmers to discuss
programming matters gets in the way of
them discussing business matters with
sponsors, users and business experts.

 SE/Agile 31

Universities

• Can reverse the general characteristics by
creating software development curricula
that contain more communication-intensive
courses

• Attracts different students (University of
Aalborg, Denmark).

 SE/Agile 32

Gaming Faster

• We should not expect orders of magnitude
improvement in program production.

• As much as programming languages may
improve, programminvg will still be limited
by our ability to think through the problem
and the solution.

 SE/Agile 33

Analogy

• Two other fields of thought expression
– Writing novels
– Writing laws: Lawyers won’t get exponentially

faster at creating contracts and laws!

 SE/Agile 34

Diminishing Returns

• Because a software development project is
resource limited, spending extra to make an
intermediate work product better than it
needs to be for its purpose is wasteful.

 SE/Agile 35

What is
software development?

• Software Development is a resource-
limited) cooperative game of invention and
communication.
– The primary goal of the game is to deliver

useful, working software.
– The secondary goal of the game is to set up for

the next game. The next game may be to alter
or replace the system or to create a neighboring
system. Not many people have articulated this before

 SE/Agile 36

Peter Naur

Programming as Theory Building

From Computing: A Human Activity

(1992, ACM Press)

 SE/Agile 37

What goes on in software
development? Intro.

• Most accurate account

• Quality is related to the match between the
theory of the problem and the theory of the
solution.

• The designer’s job is not to pass along the
design but the theories that drive the design.

 SE/Agile 38

What is programming

• Should be regarded as an activity by which
the programmers form or achieve a certain
kind of insight, a theory, of the matters at
hand.

• Not as a production of a program and other
texts.

 SE/Agile 39

Programming and the
Programmer’s Knowledge

• Programming = the whole activity of design and
implementation

• Programming = building up knowledge
• What kind of knowledge?
• A theory: a person who has or posses a theory

knows how to do certain things and can support
the actual doing with explanations, justifications
and answers to queries.

 SE/Agile 40

Theory transcends documentation
in at least 3 essential ways

• How are affairs of the world mapped into the
program text? For any aspect of the world the
programmer can state its manner of mapping into
the program text. [AOSD]

• Can support the program text with some
justification.

• Is able to respond constructively to any demand
for a modification. Similarity of new demand to
similarities already in the system.

 SE/Agile 41

Problems and Costs of Program
Modifications

• Cost savings by modifying existing program
rather starting from scratch.

• Cheaper? Not supported by other
complicated man-made constructions:
bridges, buildings, etc. Often demolish and
rebuild is most economical.

• Program modification is just text editing?

 SE/Agile 42

Program flexibility

• Build into the program operation facilities
that are not immediately demanded.

• May be expensive.
– AOSD:

• extend program by addition not modification.

• Works best if program is very systematically
organized (easier to write pointcuts).

 SE/Agile 43

Similarity

• Similarity:
– Requirements for existing solution

– Requirements for new demands

• To see the similarities we need to understand the
“theory” behind the existing solution.

• Person having the theory must already be prepared
to respond to questions that give rise to program
modifications (theory stays the same).

 SE/Agile 44

Decay

• Decay of program text if people are making
modifications without understanding theory
behind the program.

• We want theory conforming modifications
to the program text. Otherwise we get
unintegrated patches.

 SE/Agile 45

Life cycle of a program

• Birth: building of theory.
• Life: programmer team possessing theory remains

in active control of the program.
• Death: programmer team is dissolved.
• Revival: rebuilding of its theory by a new

programmer team.
• New programmers need to work in close contact

with programmers who have theory.
• Start from scratch?

 SE/Agile 46

Method and theory building

• Method
– Set of work rules
– Which notations/languages
– Documents to produce

• Theory cannot be expressed
– No right method

• Contradiction?

 SE/Agile 47

Software Development

• Should be based on scientific manners?
– Are scientific methods helpful to scientists? Debatable.

– Not contradicted by such works as Polya’s on problem
solving (How to solve it and Patterns of Plausible
Inference).

• Does not present a method on how to proceed.

• A collection of suggestions aiming at stimulating the mental
activity of the problem solver.

• Highly relevant to programming.

 SE/Agile 48

Dismissal of method

• Have methods been successful?

• Controlled experiments would be very
expensive.

• AOSD
– Is it a method? Yes, e.g. combined with

Extreme Programming.
– Do we need a controlled experiment? No!

	Agile Software Development
	Three Levels of Learning
	The Three Levels and Methodology
	Three Levels of Methodology
	Shu-Ha-Ri
	A Cooperative Game of Invention and Communication
	Software Development
	Infinite Games
	Software and Rock Climbing
	Slide 10
	Slide 11
	A Game of Invention and Communication
	Cooperative Game of Invention and Communication
	Emotions, wishes and thoughts
	What is software development?
	Software and Engineering
	Engineering
	What is “doing engineering”
	Confusing act and outcome
	More like Engineering?
	Look up previous solutions
	Fits marginally
	Return
	Software and Model Building
	Interesting part not in models
	But successful project teams say
	Sufficiency
	Modeling as team communication
	Programmers as Communications Specialists
	Game of invention
	Universities
	Gaming Faster
	Analogy
	Diminishing Returns
	Slide 35
	Peter Naur
	What goes on in software development? Intro.
	What is programming
	Programming and the Programmer’s Knowledge
	Theory transcends documentation in at least 3 essential ways
	Problems and Costs of Program Modifications
	Program flexibility
	Similarity
	Decay
	Life cycle of a program
	Method and theory building
	Slide 47
	Dismissal of method

