
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 1

Software Engineering: A Practitioner’s Approach, Software Engineering: A Practitioner’s Approach,
6/e6/e

Chapter 7Chapter 7
Requirements EngineeringRequirements Engineering

copyright © 1996, 2001, 2005

R.S. Pressman & Associates, Inc.

For University Use Only

May be reproduced ONLY for student use at the university level

when used in conjunction with Software Engineering: A Practitioner's Approach.

Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 2

Requirements Engineering-IRequirements Engineering-I

 InceptionInception—ask a set of questions that establish …—ask a set of questions that establish …
 basic understanding of the problembasic understanding of the problem
 the people who want a solutionthe people who want a solution
 the nature of the solution that is desired, and the nature of the solution that is desired, and
 the e�ectiveness of preliminary communication and collaboration the e�ectiveness of preliminary communication and collaboration

between the customer and the developerbetween the customer and the developer

 ElicitationElicitation—elicit requirements from all stakeholders—elicit requirements from all stakeholders
 ElaborationElaboration—create an analysis model that identi�es data, function —create an analysis model that identi�es data, function

and behavioral requirementsand behavioral requirements
 NegotiationNegotiation—agree on a deliverable system that is realistic for —agree on a deliverable system that is realistic for

developers and customersdevelopers and customers

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 3

Requirements Engineering-IIRequirements Engineering-II
 Speci�cationSpeci�cation—can be any one (or more) of the following:—can be any one (or more) of the following:

 A written documentA written document
 A set of modelsA set of models
 A formal mathematicalA formal mathematical
 A collection of user scenarios (use-cases)A collection of user scenarios (use-cases)
 A prototypeA prototype

 ValidationValidation—a review mechanism that looks for—a review mechanism that looks for
 errors in content or interpretationerrors in content or interpretation
 areas where clari�cation may be requiredareas where clari�cation may be required
 missing informationmissing information
 inconsistencies (a major problem when large products or systems are inconsistencies (a major problem when large products or systems are

engineered)engineered)
 con)icting or unrealistic (unachievable) requirements. con)icting or unrealistic (unachievable) requirements.

 Requirements managementRequirements management

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 4

InceptionInception

 Identify stakeholdersIdentify stakeholders
 ““who else do you think I should talk to?”who else do you think I should talk to?”

 Recognize multiple points of viewRecognize multiple points of view
 Work toward collaborationWork toward collaboration
 The �rst questionsThe �rst questions

 Who is behind the request for this work?Who is behind the request for this work?
 Who will use the solution?Who will use the solution?
 What will be the economic bene�t of a successful solutionWhat will be the economic bene�t of a successful solution
 Is there another source for the solution that you need?Is there another source for the solution that you need?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 5

Eliciting RequirementsEliciting Requirements
 meetings are conducted and attended by both software engineers and meetings are conducted and attended by both software engineers and

customerscustomers
 rules for preparation and participation are establishedrules for preparation and participation are established
 an agenda is suggested an agenda is suggested
 a "facilitator" (can be a customer, a developer, or an outsider) controls the a "facilitator" (can be a customer, a developer, or an outsider) controls the

meetingmeeting
 a "de�nition mechanism" (can be work sheets,)ip charts, or wall stickers a "de�nition mechanism" (can be work sheets,)ip charts, or wall stickers

or an electronic bulletin board, chat room or virtual forum) is usedor an electronic bulletin board, chat room or virtual forum) is used
 the goal is the goal is

 to identify the problemto identify the problem
 propose elements of the solutionpropose elements of the solution
 negotiate di�erent approaches, andnegotiate di�erent approaches, and
 specify a preliminary set of solution requirementsspecify a preliminary set of solution requirements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 6

Eliciting RequirementsEliciting Requirements

Use QFD to

prioritize

requirements

informally

prioritize

requirements

formal prioritization?

Create Use-cases

yes no

Elic it requirements

write scenario

define actors

complete template

draw use-case

diagram

Conduct FAST

meetings

Make lists of

functions, classes

Make lists of

constraints, etc.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 7

Quality Function DeploymentQuality Function Deployment

 Function deploymentFunction deployment determines the “value” (as determines the “value” (as
perceived by the customer) of each function required of perceived by the customer) of each function required of
the systemthe system

 Information deploymentInformation deployment identi�es data objects and identi�es data objects and
eventsevents

 Task deploymentTask deployment examines the behavior of the system examines the behavior of the system
 Value analysisValue analysis determines the relative priority of determines the relative priority of

requirementsrequirements

Quality Function DeploymentQuality Function Deployment
 QFD : emphasizes an understanding of what is valuable QFD : emphasizes an understanding of what is valuable

to customer & then deploys these values throughout to customer & then deploys these values throughout
the engineering process.the engineering process.

3 types of requirements3 types of requirements

 Normal requirementsNormal requirements

 Expected requirementsExpected requirements

 Exciting requirementsExciting requirements
8

QFDQFD

 QFD techniques applicable to requirements elicitation.QFD techniques applicable to requirements elicitation.

 QFD uses customer interviews , surveys & examination of QFD uses customer interviews , surveys & examination of
historical data for requirement gathering activity.historical data for requirement gathering activity.

 Data is then translated into a table of requirements called Data is then translated into a table of requirements called
customer customer Voice tableVoice table..

 Voice table is reviewed by customer & stakeholders.Voice table is reviewed by customer & stakeholders.

9

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 10

Elicitation Work ProductsElicitation Work Products
 a statement of need and feasibility.a statement of need and feasibility.
 a bounded statement of scope for the system or product.a bounded statement of scope for the system or product.
 a list of customers, users, and other stakeholders who a list of customers, users, and other stakeholders who

participated in requirements elicitation participated in requirements elicitation
 a description of the system’s technical environment.a description of the system’s technical environment.
 a list of requirements (preferably organized by function) a list of requirements (preferably organized by function)

and the domain constraints that apply to each.and the domain constraints that apply to each.
 a set of usage scenarios that provide insight into the use of a set of usage scenarios that provide insight into the use of

the system or product under di�erent operating the system or product under di�erent operating
conditions.conditions.

 any prototypesany prototypes developed to better de�ne requirementsdeveloped to better de�ne requirements.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 11

Use-CasesUse-Cases
 A collection of user scenarios that describe the thread of usage of a systemA collection of user scenarios that describe the thread of usage of a system
 Each scenario is described from the point-of-view of an “actor”—a person or Each scenario is described from the point-of-view of an “actor”—a person or

device that interacts with the software in some waydevice that interacts with the software in some way
 Each scenario answers the following questions:Each scenario answers the following questions:

 Who is the primary actor, the secondary actor (s)?Who is the primary actor, the secondary actor (s)?
 What are the actor’s goals?What are the actor’s goals?
 What preconditions should exist before the story begins?What preconditions should exist before the story begins?
 What main tasks or functions are performed by the actor?What main tasks or functions are performed by the actor?
 What extensions might be considered as the story is described?What extensions might be considered as the story is described?
 What variations in the actor’s interaction are possible?What variations in the actor’s interaction are possible?
 What system information will the actor acquire, produce, or change?What system information will the actor acquire, produce, or change?
 Will the actor have to inform the system about changes in the external Will the actor have to inform the system about changes in the external

environment?environment?
 What information does the actor desire from the system?What information does the actor desire from the system?
 Does the actor wish to be informed about unexpected changes?Does the actor wish to be informed about unexpected changes?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 12

Use-Case DiagramUse-Case Diagram

homeowner

Arms/ disarms

system

Accesses system

via Internet

Reconfigures sensors

and related

system features

Responds to

alarm event

Encounters an

error condition

system

administrator

sensors

13

14

15

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 16

Building the Requirement ModelBuilding the Requirement Model

 Elements of the requirement modelElements of the requirement model
 Scenario-based elementsScenario-based elements

 Functional—processing narratives for software functionsFunctional—processing narratives for software functions
 Use-case—descriptions of the interaction between an Use-case—descriptions of the interaction between an

“actor” and the system“actor” and the system

 Class-based elementsClass-based elements
 Implied by scenariosImplied by scenarios

 Behavioral elementsBehavioral elements
 State diagramState diagram

 Flow-oriented elementsFlow-oriented elements
 Data)ow diagramData)ow diagram

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 17

Analysis ClassesAnalysis Classes
 External entitiesExternal entities (e.g., other systems, devices, people) that produce or consume (e.g., other systems, devices, people) that produce or consume

information to be used by a computer-based system.information to be used by a computer-based system.

 ThingsThings (e.g, reports, displays, letters, signals) that are part of the information domain for (e.g, reports, displays, letters, signals) that are part of the information domain for
the problem.the problem.

 Occurrences or eventsOccurrences or events (e.g., a property transfer or the completion of a series of robot (e.g., a property transfer or the completion of a series of robot
movements) that occur within the context of system operation.movements) that occur within the context of system operation.

 RolesRoles (e.g., manager, engineer, salesperson) played by people who interact with the (e.g., manager, engineer, salesperson) played by people who interact with the
system.system.

 Organizational unitsOrganizational units (e.g., division, group, team) that are relevant to an application. (e.g., division, group, team) that are relevant to an application.

 PlacesPlaces (e.g., manufacturing)oor or loading dock) that establish the context of the (e.g., manufacturing)oor or loading dock) that establish the context of the
problem and the overall function of the system.problem and the overall function of the system.

 StructuresStructures (e.g., sensors, four-wheeled vehicles, or computers) that de�ne a class of (e.g., sensors, four-wheeled vehicles, or computers) that de�ne a class of
objects or related classes of objects.objects or related classes of objects.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 18

Selecting Classes—CriteriaSelecting Classes—Criteria

Needed servicesNeeded services

Multiple attributesMultiple attributes

Common attributesCommon attributes

Common operationsCommon operations

Essential requirementsEssential requirements

Retained informationRetained information

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 19

Class DiagramClass Diagram
System

program()

display()

reset()

query()

modify()

call()

systemID

verificationPhoneNumber

systemStatus

delayTime

telephoneNumber

masterPassword

temporaryPassword

numberTries

Class name

attributes

operations

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 20

Class DiagramClass Diagram
FloorPlan

determineType ()
positionFloorplan

scale()
change color()

type
name
outsideDimensions

Camera

determineType ()

translateLocation ()

displayID()

displayView()

displayZoom()

type

ID

location

fieldView

panAngle

ZoomSetting

WallSegment

type

startCoordinates

stopCoordinates

nextWallSement

determineType ()

draw()

Window

type

startCoordinates

stopCoordinates

nextWindow

determineType ()
draw()

is placed within

Wall

type

wallDimensions

determineType ()
computeDimensions ()

Door

type

startCoordinates

stopCoordinates

nextDoor

determineType ()
draw()

is part of

is used to buildis used to build

is used to build

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 21

CRC ModelingCRC Modeling
(Class_Responsibility-Collaborator)(Class_Responsibility-Collaborator)

 Analysis classes have “responsibilities”Analysis classes have “responsibilities”
 ResponsibilitiesResponsibilities are the attributes and operations encapsulated by are the attributes and operations encapsulated by

the classthe class

 Analysis classes collaborate with one anotherAnalysis classes collaborate with one another
 CollaboratorsCollaborators are those classes that are required to provide a are those classes that are required to provide a

class with the information needed to complete a responsibility. class with the information needed to complete a responsibility.
 In general, a collaboration implies either a request for In general, a collaboration implies either a request for

information or a request for some action.information or a request for some action.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 22

CRC CRC
ModelingModeling

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class: FloorPlan

Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 23

Class TypesClass Types
 Entity classesEntity classes, also called, also called model model or or businessbusiness classes, are extracted classes, are extracted

directly from the statement of the problem (e.g., FloorPlan and directly from the statement of the problem (e.g., FloorPlan and
Sensor). Sensor).

 Boundary classesBoundary classes are used to create the interface (e.g., interactive are used to create the interface (e.g., interactive
screen or printed reports) that the user sees and interacts with as screen or printed reports) that the user sees and interacts with as
the software is used. the software is used.

 Controller classesController classes manage a “unit of work” [UML03] from start to manage a “unit of work” [UML03] from start to
�nish. That is, controller classes can be designed to manage �nish. That is, controller classes can be designed to manage
 the creation or update of entity objects; the creation or update of entity objects;
 the instantiation of boundary objects as they obtain information from the instantiation of boundary objects as they obtain information from

entity objects; entity objects;
 complex communication between sets of objects; complex communication between sets of objects;
 validation of data communicated between objects or between the user validation of data communicated between objects or between the user

and the application. and the application.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 24

ResponsibilitiesResponsibilities
(Attributes and methods relevant to the class)(Attributes and methods relevant to the class)

 System intelligence should be distributed across classes System intelligence should be distributed across classes
to best address the needs of the problemto best address the needs of the problem

 Each responsibility should be stated as generally as Each responsibility should be stated as generally as
possiblepossible

 Information and the behavior related to it should reside Information and the behavior related to it should reside
within the same classwithin the same class

 Information about one thing should be localized with a Information about one thing should be localized with a
single class, not distributed across multiple classes.single class, not distributed across multiple classes.

 Responsibilities should be shared among related classes, Responsibilities should be shared among related classes,
when appropriate. when appropriate.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 25

CollaborationsCollaborations

 Classes ful�ll their responsibilities in one of two ways:Classes ful�ll their responsibilities in one of two ways:
 A class can use its own operations to manipulate its own A class can use its own operations to manipulate its own

attributes, thereby ful�lling a particular responsibility, or attributes, thereby ful�lling a particular responsibility, or
 a class can collaborate with other classes.a class can collaborate with other classes.

 Collaborations identify relationships between classesCollaborations identify relationships between classes
 Collaborations are identi�ed by determining whether a class Collaborations are identi�ed by determining whether a class

can ful�ll each responsibility itselfcan ful�ll each responsibility itself
 Three di�erent generic relationships between classes [WIR90]: Three di�erent generic relationships between classes [WIR90]:

 the the is-part-ofis-part-of relationshiprelationship
 the the has-knowledge-ofhas-knowledge-of relationship relationship
 the the depends-upondepends-upon relationshiprelationship

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 26

Composite Aggregate ClassComposite Aggregate Class

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 27

Reviewing the CRC ModelReviewing the CRC Model
 All participants in the review (of the CRC model) are given a subset of the All participants in the review (of the CRC model) are given a subset of the

CRC model index cards.CRC model index cards.
 Cards that collaborate should be separated (i.e., no reviewer should have two Cards that collaborate should be separated (i.e., no reviewer should have two

cards that collaborate).cards that collaborate).
 All use-case scenarios (and corresponding use-case diagrams) should be All use-case scenarios (and corresponding use-case diagrams) should be

organized into categoriesorganized into categories..
 The review leader reads the use-case deliberatelyThe review leader reads the use-case deliberately..

 As the review leader comes to a named object, she passes a token to the person As the review leader comes to a named object, she passes a token to the person
holding the corresponding class index card.holding the corresponding class index card.

 When the token is passed, the holder of the class card is asked to describe the When the token is passed, the holder of the class card is asked to describe the
responsibilities noted on the cardresponsibilities noted on the card..
 The group determines whether one (or more) of the responsibilities satis�es the The group determines whether one (or more) of the responsibilities satis�es the

use-case requirement.use-case requirement.
 If the responsibilities and collaborations noted on the index cards cannot If the responsibilities and collaborations noted on the index cards cannot

accommodate the use-case, modi�cations are made to the cardsaccommodate the use-case, modi�cations are made to the cards..
 This may include the de�nition of new classes (and corresponding CRC index This may include the de�nition of new classes (and corresponding CRC index

cards) or the speci�cation of new or revised responsibilities or collaborations on cards) or the speci�cation of new or revised responsibilities or collaborations on
existing cards.existing cards.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 28

Associations and DependenciesAssociations and Dependencies

 Two analysis classes are often related to one another in Two analysis classes are often related to one another in
some fashionsome fashion
 In UML these relationships are called In UML these relationships are called associationsassociations
 Associations can be re�ned by indicatingAssociations can be re�ned by indicating multiplicitymultiplicity (the term (the term

cardinalitycardinality is used in data modelingis used in data modeling

 In many instances, a client-server relationship exists In many instances, a client-server relationship exists
between two analysis classes. between two analysis classes.
 In such cases, a client-class depends on the server-class in some In such cases, a client-class depends on the server-class in some

way and a way and a dependency relationshipdependency relationship is established is established

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 29

MultiplicityMultiplicity

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 30

DependenciesDependencies

CameraDisplayWindow

{password}

<<access>>

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 31

Analysis PackagesAnalysis Packages

 Various elements of the analysis model (e.g., use-cases, Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that analysis classes) are categorized in a manner that
packages them as a groupingpackages them as a grouping

 The plus sign preceding the analysis class name in each The plus sign preceding the analysis class name in each
package indicates that the classes have public visibility package indicates that the classes have public visibility
and are therefore accessible from other packages.and are therefore accessible from other packages.

 Other symbols can precede an element within a package. Other symbols can precede an element within a package.
A minus sign indicates that an element is hidden from A minus sign indicates that an element is hidden from
all other packages and a # symbol indicates that an all other packages and a # symbol indicates that an
element is accessible only to packages contained within a element is accessible only to packages contained within a
given package.given package.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 32

Analysis PackagesAnalysis Packages

Environment

+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

Characters

+Player
+Protagonist
+Antagonist
+SupportingRole

RulesOfTheGame

+RulesOfMovement
+ConstraintsOnAction

package name

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 33

Behavioral ModelingBehavioral Modeling

 The behavioral model indicates how software will respond to The behavioral model indicates how software will respond to
external events or stimuli. To create the model, the analyst external events or stimuli. To create the model, the analyst
must perform the following steps:must perform the following steps:

 Evaluate all use-cases to fully understand the sequence Evaluate all use-cases to fully understand the sequence
of interaction within the system.of interaction within the system.

 Identify events that drive the interaction sequence and Identify events that drive the interaction sequence and
understand how these events relate to speci�c objects.understand how these events relate to speci�c objects.

 Create a sequence for each use-case.Create a sequence for each use-case.
 Build a state diagram for the system.Build a state diagram for the system.
 Review the behavioral model to verify accuracy and Review the behavioral model to verify accuracy and

consistency.consistency.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 34

State RepresentationsState Representations

 In the context of behavioral modeling, two di�erent In the context of behavioral modeling, two di�erent
characterizations of states must be considered: characterizations of states must be considered:
 the state of each class as the system performs its function andthe state of each class as the system performs its function and
 the state of the system as observed from the outside as the the state of the system as observed from the outside as the

system performs its functionsystem performs its function
 The state of a class takes on both passive and active The state of a class takes on both passive and active

characteristics [CHA93]. characteristics [CHA93].
 A A passive statepassive state is simply the current status of all of an object’s is simply the current status of all of an object’s

attributes.attributes.
 The The active stateactive state of an object indicates the current status of the of an object indicates the current status of the

object as it undergoes a continuing transformation or processing. object as it undergoes a continuing transformation or processing.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 35

State Diagram for the ControlPanel ClassState Diagram for the ControlPanel Class

reading

locked

selecting

password

entered

comparing

password = incorrect

& numberOfTries < maxTries

password = correct

activation successful

key hit

do: validatePassword

numberOfTries > maxTries

timer < lockedTime

timer > lockedTime

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 36

The States of a SystemThe States of a System
 statestate—a set of observables that —a set of observables that

characterizes the behavior of a system at characterizes the behavior of a system at
a given timea given time

 state transitionstate transition—the movement from one —the movement from one
state to anotherstate to another

 eventevent—an occurrence that causes the —an occurrence that causes the
system to exhibit some predictable form system to exhibit some predictable form
of behaviorof behavior

 actionaction—process that occurs as a —process that occurs as a
consequence of making a transitionconsequence of making a transition

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 37

Behavioral ModelingBehavioral Modeling

 Make a list of the di�erent states of a system Make a list of the di�erent states of a system
(How does the system behave?)(How does the system behave?)

 Indicate how the system makes a transition Indicate how the system makes a transition
from one state to another (How does the from one state to another (How does the
system change state?)system change state?)
 indicate eventindicate event
 indicate actionindicate action

 Draw a Draw a state diagram or a sequence state diagram or a sequence
diagramdiagram

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 38

Sequence DiagramSequence Diagram
homeowner control panel sensorssystem sensors

system

ready

reading

request lookup
comparing

result

password entered

password = correct

request activation

activation successful

locked
numberOfTries > maxTries

selecting

timer > lockedTime
A

A

Figure 8.27 Sequence diagram (partial) for SafeHome security function

activation successful

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 39

Writing the Software Speci3cationWriting the Software Speci3cation

Everyone knew exactly
what had to be done
until someone wrote it
down!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 40

Class DiagramClass Diagram

Sensor

name/id

type

location

area

characteristics

identify()

enable()

disable()

reconfigure()

From the From the SafeHomeSafeHome system … system …

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 41

State DiagramState Diagram

Figure 7.6 Preliminary UML state diagram for a photocopier

Initialization

system status=“not ready”

display msg = “please wait”

display status = blinking

entry/ switch machine on

do: run diagnostics

do: initiate all subsystems

turn copier
“on“

subsystems

ready
system status=“Ready”

display msg = “enter cmd”
display status = steady

entry/ subsystems ready

do: poll user input panel
do: read user input

do: interpret user input

Reading

commands

system status=“Copying”

display msg= “copy count =”
display message=#copies

display status= steady

entry/ start copies

do: manage copying

do: monitor paper tray

do: monitor paper flow

Making copies

start copies

system status=“Jammed”

display msg= “paper jam”

display message=location

display status= blinking

entry/ paper jammed

do: determine location
do: provide corrective msg.

do: interrupt making copies

problem diagnosis

paper jammed

system status=“load paper”

display msg= “load paper”

display status= blinking

entry/ paper empty

do: lower paper tray
do: monitor fill switch

do: raise paper tray

load paper

paper tray empty

not jammed

paper full

turn copier “off”

not jammed

copies complete

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 42

Analysis PatternsAnalysis Patterns

Pattern name:Pattern name: A descriptor that captures the essence of the pattern. A descriptor that captures the essence of the pattern.

Intent:Intent: Describes what the pattern accomplishes or represents Describes what the pattern accomplishes or represents

Motivation:Motivation: A scenario that illustrates how the pattern can be used to address the A scenario that illustrates how the pattern can be used to address the
problem.problem.

Forces and context:Forces and context: A description of external issues (forces) that can a ect how the A description of external issues (forces) that can a ect how the
pattern is used and also the external issues that will be resolved when the pattern is pattern is used and also the external issues that will be resolved when the pattern is
applied. applied.

Solution:Solution: A description of how the pattern is applied to solve the problem with an A description of how the pattern is applied to solve the problem with an
emphasis on structural and behavioral issues.emphasis on structural and behavioral issues.

ConsequencesConsequences: Addresses what happens when the pattern is applied and what : Addresses what happens when the pattern is applied and what
trade-o s exist during its application.trade-o s exist during its application.

DesignDesign: Discusses how the analysis pattern can be achieved through the use of : Discusses how the analysis pattern can be achieved through the use of
known design patterns.known design patterns.

Known usesKnown uses: Examples of uses within actual systems.: Examples of uses within actual systems.

Related patternsRelated patterns: On e or more analysis patterns that are related to the named : On e or more analysis patterns that are related to the named
pattern because (1) it is commonly used with the named pattern; (2) it is structurally pattern because (1) it is commonly used with the named pattern; (2) it is structurally
similar to the named pattern; (3) it is a variation of the named pattern.similar to the named pattern; (3) it is a variation of the named pattern.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 43

Negotiating RequirementsNegotiating Requirements

 Identify the key stakeholdersIdentify the key stakeholders
 These are the people who will be involved in the negotiationThese are the people who will be involved in the negotiation

 Determine each of the stakeholders “win conditions”Determine each of the stakeholders “win conditions”
 Win conditions are not always obviousWin conditions are not always obvious

 NegotiateNegotiate
 Work toward a set of requirements that lead to “win-win”Work toward a set of requirements that lead to “win-win”

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 44

Validating Requirements-IValidating Requirements-I
 Is each requirement consistent with the overall objective for the Is each requirement consistent with the overall objective for the

system/product?system/product?
 Have all requirements been speci�ed at the proper level of Have all requirements been speci�ed at the proper level of

abstraction? That is, do some requirements provide a level of abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?technical detail that is inappropriate at this stage?

 Is the requirement really necessary or does it represent an add-on Is the requirement really necessary or does it represent an add-on
feature that may not be essential to the objective of the system?feature that may not be essential to the objective of the system?

 Is each requirement bounded and unambiguous?Is each requirement bounded and unambiguous?
 Does each requirement have attribution? That is, is a source Does each requirement have attribution? That is, is a source

(generally, a speci�c individual) noted for each requirement? (generally, a speci�c individual) noted for each requirement?
 Do any requirements con)ict with other requirements?Do any requirements con)ict with other requirements?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 45

Validating Requirements-IIValidating Requirements-II

 Is each requirement achievable in the technical environment that will house Is each requirement achievable in the technical environment that will house
the system or product?the system or product?

 Is each requirement testable, once implemented?Is each requirement testable, once implemented?
 Does the requirements model properly re)ect the information, function and Does the requirements model properly re)ect the information, function and

behavior of the system to be built.behavior of the system to be built.
 Has the requirements model been “partitioned” in a way that exposes Has the requirements model been “partitioned” in a way that exposes

progressively more detailed information about the system.progressively more detailed information about the system.
 Have requirements patterns been used to simplify the requirements model. Have requirements patterns been used to simplify the requirements model.

Have all patterns been properly validated? Are all patterns consistent with Have all patterns been properly validated? Are all patterns consistent with
customer requirements?customer requirements?

	Software Engineering: A Practitioner’s Approach, 6/e Chapter 7 Requirements Engineering copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited.
	Requirements Engineering-I
	Requirements Engineering-II
	Inception
	Eliciting Requirements
	Slide 6
	Quality Function Deployment
	Slide 8
	QFD
	Elicitation Work Products
	Use-Cases
	Use-Case Diagram
	Slide 13
	Slide 14
	Slide 15
	Building the Requirement Model
	Analysis Classes
	Selecting Classes—Criteria
	Class Diagram
	Slide 20
	CRC Modeling (Class_Responsibility-Collaborator)
	CRC Modeling
	Class Types
	Responsibilities (Attributes and methods relevant to the class)
	Collaborations
	Composite Aggregate Class
	Reviewing the CRC Model
	Associations and Dependencies
	Multiplicity
	Dependencies
	Analysis Packages
	Slide 32
	Behavioral Modeling
	State Representations
	State Diagram for the ControlPanel Class
	The States of a System
	Slide 37
	Sequence Diagram
	Writing the Software Specification
	Slide 40
	State Diagram
	Analysis Patterns
	Negotiating Requirements
	Validating Requirements-I
	Validating Requirements-II

