Software Engineering: A Practitioner’s Approach,
6/e

Chapter 7
Requirements Engineering

copyright © 1996, 2001, 2005
R.S. Pressman & Associates, Inc.

For University Use Only
May be reproduced ONLY for student use at the university level
when used in conjunction with Software Engineering: A Practitioner's Approach.
Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Requirements Engineering-1

® Inception—ask a set of questions that establish ...

basic understanding of the problem
the people who want a solution
the nature of the solution that is desired, and

the effectiveness of preliminary communication and collaboration
between the customer and the developer

® Flicitation—elicit requirements from all stakeholders

" Elaboration—create an analysis model that identifies data, function
and behavioral requirements

" Negotiation—agree on a deliverable system that is realistic for
developers and customers

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Requirements Engineering-11

" Specification—can be any one (or more) of the following:
" A written document

A set of models

A formal mathematical

A collection of user scenarios (use-cases)

A prototype

® Validation—a review mechanism that looks for

® errors in content or interpretation

® areas where clarification may be required
® missing information

|

inconsistencies (a major problem when large products or systems are
engineered)

® conflicting or unrealistic (unachievable) requirements.
" Requirements management

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Inception

" Identity stakeholders
" “who else do you think I should talk to?”

" Recognize multiple points of view
" Work toward collaboration

® The first questions
® Who is behind the request for this work?
® Who will use the solution?
® What will be the economic benefit of a successful solution
" Is there another source for the solution that you need?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Eliciting Requirements

" meetings are conducted and attended by both software engineers and
customers

® rules for preparation and participation are established
® an agenda is suggested

® a "facilitator" (can be a customer, a developer, or an outsider) controls the
meeting

® a'"definition mechanism" (can be work sheets, flip charts, or wall stickers
or an electronic bulletin board, chat room or virtual forum) is used

" the goalis
" toidentify the problem
" propose elements of the solution
" negotiate different approaches, and
® specity a preliminary set of solution requirements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Eliciting Requirements

Conduct FAST
meetings

Make lists of
functions, classes,

Make lists of
constraints, etc.

ye: no
Use QFDto informally
prioritize prioritize

requirements requirements

write scenario

complete template]

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Quality Function Deployment

" Function deployment determines the “value” (as
perceived by the customer) of each function required of
the system

" Information deployment identifies data objects and
events

" Task deployment examines the behavior of the system

® Value analysis determines the relative priority of
requirements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Quality Function Deployment

" QFD : emphasizes an understanding of what is valuable
to customer & then deploys these values throughout
the engineering process.

3 types of requirements
® Normal requirements
" Expected requirements

% Exciting requirements

QFD

QFD techniques applicable to requirements elicitation.

QFD uses customer interviews , surveys & examination of
historical data for requirement gathering activity.

Data is then translated into a table of requirements called
customer Voice table.

Voice table is reviewed by customer & stakeholders.

Elicitation Work Products

" astatement of need and feasibility.
® abounded statement of scope for the system or product.

® a list of customers, users, and other stakeholders who
participated in requirements elicitation

® a description of the system’s technical environment.

" alist of requirements (preferably organized by function)
and the domain constraints that apply to each.

" aset of usage scenarios that provide insight into the use of
the system or product under different operating
conditions.

® any prototypes developed to better define requirements.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Use-Cases

" A collection of user scenarios that describe the thread of usage of a system

® Each scenario is described from the point-of-view of an “actor”—a person or
device that interacts with the software in some way

® Fach scenario answers the following questions:

Who is the primary actor, the secondary actor (s)?

What are the actor’s goals?

What preconditions should exist before the story begins?

What main tasks or functions are performed by the actor?

What extensions might be considered as the story is described?
What variations in the actor’s interaction are possible?

What system information will the actor acquire, produce, or change?

Will the actor have to inform the system about changes in the external
environment?

What information does the actor desire from the system?
" Does the actor wish to be informed about unexpected changes?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

11

Use-Case Diagram

Arms/ disarms
system

Accesses system sensors
via Internet

homeow ner

Responds to
alarm event

Encounters an
error condition

Reconfigures sensors
and related

system features

system
administrator

e
Lﬂ:nmrian\
™y
Library Databasze
I -___‘_—\—\.
Gueat

Beport
Invalid Search

Add h\
E-:::}LRfcnnir_’}

)
(ﬁ:@

Delete
BCIDLE

. Sl fisan Bormow
Pl'Eilane Library g = s , J
Database e - Qmm "“-\I DVDs, games
o Update __//" PR
St:&tm ED : Home
o 3 ﬂehvermﬂ
Req_ues't

< '.-'_e--
\ Gl;hd-ﬂ]s

Guve
TEHED
re;m.:..a: 3er

Librarv Management Svstem

Repﬂrtlu "il.].l.d
=0 Uzer Mame: Pa_:i_f/

;'s.mhentm
_ﬁ’ e R o
l\'\—Blil‘l"—A—’/’l N
o —— ——

———

AT Pt AT
o I\‘«-,_ StamsID

-

Fenew _h‘\\/f/
B
Da.tabase ,..-/ ______

i3 N T4

@Eﬁi’mm i) R

4
(Feadbah
e ;

-.:-r._'E:: o=

Check & Upc[ate

= e

N\

IEW bmf-.q

‘L-'I_P user __"-/

E’é}——@j

|

cone IMCcome
L4

Finarg:= hBnagement =ywstem

,//_I;-cpenditur\e

<<extends % Undergo Operation

doctor appointments

Receptioni=t

tests appointment=

—

StaffriMurses

&dd doctor'statf

Delete doctordsstatt

A

cin — Records System

Inhou=e %

Doctors

Bdit doctordstatf info

Consultant= Wrardwize Bed Status

\

Information Syw=tem

admi=zionfdizcharge report=s

patient information

e,

vigw' emp detatls

arnployes

Building the Requirement Model

" Elements of the requirement model

® Scenario-based elements
® Functional—processing narratives for software functions

" Use-case—descriptions of the interaction between an
“actor” and the system

® (Class-based elements

" Implied by scenarios
® Behavioral elements

" State diagram
® Flow-oriented elements

" Data flow diagram

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

16

Analysis Classes

" External entities (e.g., other systems, devices, people) that produce or consume
information to be used by a computer-based system.

" Things (e.g, reports, displays, letters, signals) that are part of the information domain for
the problem.

® Occurrences or events (e.g., a property transfer or the completion of a series of robot
movements) that occur within the context of system operation.

® Roles (e.g., manager, engineer, salesperson) played by people who interact with the
system.

" Organizational units (e.g., division, group, team) that are relevant to an application.

® Places (e.g., manufacturing floor or loading dock) that establish the context of the
problem and the overall function of the system.

" Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a class of
objects or related classes of objects.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Selecting Classes—Criteria

‘Retained information
I/Needed services

n/\/[ultiple attributes
z/Common attributes

z/Common operations

(Essential requirements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

18

Class Diagram
Class name

systemiID
verificationPhoneNumber .
systemStatus attributes
delayTime

telephoneNumber

masterPassword

temporaryPassword

numberTries

program()

display()

reset() g
query() Operatlons
modify()

call()

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

These courseware mat
are provided with per

Class Diagram

type
name
outsideDimensions

determineType ()
positionFloorplan
scale()

change color()

is placed within}

is part of

Camera

type type

ID wallDimensions
location

fieldView

panAngle

ZoomSetting determineType ()

determineType () computeDimensions ()

translateLocation ()
displayID()
displayView()
displayZoom()

is used to buildp» « is used to build

A
WallSegment

is used to build
type type type

startCoordinates startCoordinates startCoordinates
stopCoordinates stopCoordinates stopCoordinates
nextWallSement nextWindow nextDoor

determineType () determineType () determineType ()
draw() draw() draw()

20

CRC Modeling

(Class_Responsibility-Collaborator)

® Analysis classes have “responsibilities”

" Responsibilities are the attributes and operations encapsulated by
the class

® Analysis classes collaborate with one another

" Collaborators are those classes that are required to provide a
class with the information needed to complete a responsibility.

® In general, a collaboration implies either a request for
information or a request for some action.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 21

CRC
Modeling

Collaborator:

defines floor plan name/type
manages floor plan positioning

scales floor plan for display
scales floor plan for display

shows position of video cameras

incorporates walls, doors and Windo*vs

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

22

Class Types

" Entity classes, also called model or business classes, are extracted
directly from the statement of the problem (e.g., FloorPlan and
Sensor).

" Boundary classes are used to create the interface (e.g., interactive
screen or printed reports) that the user sees and interacts with as
the software is used.

" Controller classes manage a “unit of work” [UMLO03 | from start to
finish. That is, controller classes can be designed to manage

" the creation or update of entity objects;

" the instantiation of boundary objects as they obtain information from
entity objects;

" complex communication between sets of objects;

" validation of data communicated between objects or between the user
and the application.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

23

Responsibilities

(Attributes and methods relevant to the class)

" System intelligence should be distributed across classes
to best address the needs ot the problem

® Each responsibility should be stated as generally as
possible

B Information and the behavior related to it should reside
within the same class

" Information about one thing should be localized with a
single class, not distributed across multiple classes.

® Responsibilities should be shared among related classes,
when appropriate.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 24

Collaborations

" C(lasses fulfill their responsibilities in one of two ways:

® A class can use its own operations to manipulate its own
attributes, thereby fulfilling a particular responsibility, or

® a class can collaborate with other classes.
" Collaborations identify relationships between classes

" Collaborations are identified by determining whether a class
can fulfill each responsibility itself
® Three different generic relationships between classes [WIR90 |:
" the is-part-of relationship
" the has-knowledge-of relationship
" the depends-upon relationship

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

25

Composite Aggregate Class

PlayerHead PlayerBody PlayerArms PlayerLegs

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Reviewing the CRC Model

" All participants in the review (of the CRC model) are given a subset of the
CRC model index cards.

® Cards that collaborate should be separated (i.e., no reviewer should have two
cards that collaborate).

® All use-case scenarios (and corresponding use-case diagrams) should be
organized into categories.
® The review leader reads the use-case deliberately.
" As the review leader comes to a named object, she passes a token to the person
holding the corresponding class index card.
" When the token is passed, the holder of the class card is asked to describe the
responsibilities noted on the card.
® The group determines whether one (or more) of the responsibilities satisfies the
use-case requirement.
" If the responsibilities and collaborations noted on the index cards cannot
accommodate the use-case, modifications are made to the cards.
® This may include the definition of new classes (and corresponding CRC index

cards) or the specification of new or revised responsibilities or collaborations on
existing cards.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

27

Associations and Dependencies

® Two analysis classes are often related to one another in
some fashion
® In UML these relationships are called associations
® Associations can be refined by indicating multiplicity (the term
cardinality is used in data modeling
" In many instances, a client-server relationship exists
between two analysis classes.

® In such cases, a client-class depends on the server-class in some
way and a dependency relationship is established

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

28

Multiplicity

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

AS

Dependencies

<<access=>>

{password}

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

30

Analysis Packages

® Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that
packages them as a grouping

" The plus sign preceding the analysis class name in each
package indicates that the classes have public visibility
and are therefore accessible from other packages.

® Other symbols can precede an element within a package.
A minus sign indicates that an element is hidden from
all other packages and a # symbol indicates that an
element is accessible only to packages contained within a
given package.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 31

Analysis Packages

Environment - -~ ~

+Tree

+Landscape

+Road

+Wall

+Bridge

+Building

+VisualEffect

+Scene +RulesOfMovement
+ConstraintsOnAction

Characters

+Player
+Protagonist
+Antagonist
+SupportingRole

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

32

Behavioral Modeling

® The behavioral model indicates how software will respond to
external events or stimuli. To create the model, the analyst
must perform the following steps:

® Evaluate all use-cases to fully understand the sequence
of interaction within the system.

® Identify events that drive the interaction sequence and
understand how these events relate to specific objects.

® Create a sequence for each use-case.
® Build a state diagram for the system.

" Review the behavioral model to verity accuracy and
consistency.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

33

State Representations

" In the context of behavioral modeling, two different
characterizations of states must be considered:
" the state of each class as the system performs its function and
" the state of the system as observed from the outside as the
system performs its function

" The state of a class takes on both passive and active
characteristics [CHA93|.

" A passive state is simply the current status of all of an object’s
attributes.

" The active state of an object indicates the current status of the
object as it undergoes a continuing transformation or processing.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

State Diagram for the ControlPanel Class

timer<lockedTime

timer >lockedTime

password = incorrect
& numberOfTries < maxTries

reading .l numberOfTries >maxTries

password _
entered do: validatePassword

password = correct

selecting

activation successful

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

The States of a System

B state—a set of observables that
characterizes the behavior of a system at
a given time

B gstate transition—the movement from one
state to another

® event—an occurrence that causes the
system to exhibit some predictable form
of behavior

® action—process that occurs as a
consequence of making a transition

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

36

Behavioral Modeling

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

37

Sequence Diagram

homeowner control panel sensors

system
ready
password entered

>

comparing

result

password = correct

|
|
|
I
I
request lookup :
|
I
I
1]

numberOfTries > maxTries request activation I

®4imer > lockedTime

activation successful activation successful

Figure 8.27 Sequence diagram (partial) for SafeHome security function

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Writing the Software Specification

Everyone knew exactly
what had to be done

until someone wrote it
down!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

39

Class Diagram

From the SafeHome system ...

name/id

type

location

area
characteristics

identify()
enable()
disable()
reconfigure)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

40

State Diagram

(" nitialization) ~ Reading

. commands not jammed
i subsystems
turn copier | o ctem status="not ready” Zady system status="Ready” paper full
on display msg ="“please wait” display msg =“enter cmd” < [

—P display status =steady

display status =blinking

entry/ switch machine on
do: run diagnostics
do: initiate all subsystems

1\ _

©< turn copier “off”

f Making copies x /

copies complete

entry/ subsystems ready
do: poll user input panel
do: read user input

@: interpret user input/

start copies

load paper \

system status="load paper”
display msg="load paper”
> display status=blinking

system status="Copying”
display msg="“copy count =
display message=#copies

paper tray empty
display status=steady

entry/ start copies paper jammed

entry/ paper empty

do: manage copying
do: monitor paper tray

@: monitor paper flow J

/ problem diagnosis N

do: lower paper tray
do: monitor fill switch

do: raise paper tray
_ _J

system status=) ammed”
display msg ="“paper jam”
display message=location
display status=blinking

not jammed

entry/ paper jammed

do: determine location

do: provide correctivemsg.
@: interrupt making copie

Figure 7.6 Preliminary UML state diagram for a photocopier

Analysis Patterns

Pattern name: A descriptor that captures the essence of the pattern.
Intent: Describes what the pattern accomplishes or represents

Motivation: A scenario that illustrates how the pattern can be used to address the
problem.

Forces and context: A description of external issues (forces) that can affect how the
pattern is used and also the external issues that will be resolved when the pattern is
applied.

Solution: A description of how the pattern is applied to solve the problem with an
emphasis on structural and behavioral issues.

Consequences: Addresses what happens when the pattern is applied and what
trade-offs exist during its application.

Design: Discusses how the analysis pattern can be achieved through the use of
known design patterns.

Known uses: Examples of uses within actual systems.

Related patterns: On e or more analysis patterns that are related to the named
pattern because (1) it is commonly used with the named pattern; (2) it is structurally
similar to the named pattern; (3) it is a variation of the named pattern.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

42

Negotiating Requirements

" Identify the key stakeholders

" These are the people who will be involved in the negotiation

® Determine each of the stakeholders “win conditions”
® Win conditions are not always obvious
" Negotiate

" Work toward a set of requirements that lead to “win-win”

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

43

Validating Requirements-I

® s each requirement consistent with the overall objective for the
system/product?

" Have all requirements been specified at the proper level of
abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?

" Is the requirement really necessary or does it represent an add-on
feature that may not be essential to the objective of the system?

® [s each requirement bounded and unambiguous?

® Does each requirement have attribution? That is, is a source
(generally, a specific individual) noted for each requirement?

" Do any requirements conflict with other requirements?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Validating Requirements-II

" Is each requirement achievable in the technical environment that will house
the system or product?
® Is each requirement testable, once implemented?

" Does the requirements model properly reflect the information, function and
behavior of the system to be built.

" Has the requirements model been “partitioned” in a way that exposes
progressively more detailed information about the system.

® Have requirements patterns been used to simplify the requirements model.
Have all patterns been properly validated? Are all patterns consistent with
customer requirements?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

45

	Software Engineering: A Practitioner’s Approach, 6/e Chapter 7 Requirements Engineering copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited.
	Requirements Engineering-I
	Requirements Engineering-II
	Inception
	Eliciting Requirements
	Slide 6
	Quality Function Deployment
	Slide 8
	QFD
	Elicitation Work Products
	Use-Cases
	Use-Case Diagram
	Slide 13
	Slide 14
	Slide 15
	Building the Requirement Model
	Analysis Classes
	Selecting Classes—Criteria
	Class Diagram
	Slide 20
	CRC Modeling (Class_Responsibility-Collaborator)
	CRC Modeling
	Class Types
	Responsibilities (Attributes and methods relevant to the class)
	Collaborations
	Composite Aggregate Class
	Reviewing the CRC Model
	Associations and Dependencies
	Multiplicity
	Dependencies
	Analysis Packages
	Slide 32
	Behavioral Modeling
	State Representations
	State Diagram for the ControlPanel Class
	The States of a System
	Slide 37
	Sequence Diagram
	Writing the Software Specification
	Slide 40
	State Diagram
	Analysis Patterns
	Negotiating Requirements
	Validating Requirements-I
	Validating Requirements-II

