
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 1

Software Engineering: A Practitioner’s Approach, Software Engineering: A Practitioner’s Approach,
6/e6/e

Chapter 2Chapter 2
Process: A Generic ViewProcess: A Generic View

copyright © 1996, 2001, 2005

R.S. Pressman & Associates, Inc.

For University Use Only

May be reproduced ONLY for student use at the university level

when used in conjunction with Software Engineering: A Practitioner's Approach.

Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 2

A Layered TechnologyA Layered Technology

Software Engineering

a “quality” focusa “quality” focus

process modelprocess model

methodsmethods

toolstools

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 3

A Process FrameworkA Process Framework

Process frameworkProcess framework

Framework activitiesFramework activities

work taskswork tasks

work productswork products

milestones & deliverablesmilestones & deliverables

QA checkpointsQA checkpoints

Umbrella ActivitiesUmbrella Activities

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 4

Framework ActivitiesFramework Activities

 CommunicationCommunication
 PlanningPlanning
 ModelingModeling

 Analysis of requirementsAnalysis of requirements
 DesignDesign

 ConstructionConstruction
 Code generationCode generation
 TestingTesting

 DeploymentDeployment

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 5

Umbrella ActivitiesUmbrella Activities

 Software project managementSoftware project management
 Formal technical reviewsFormal technical reviews
 Software quality assuranceSoftware quality assurance
 Software con guration managementSoftware con guration management
 Work product preparation and productionWork product preparation and production
 Reusability managementReusability management
 MeasurementMeasurement
 Risk managementRisk management

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 6

The Process Model:The Process Model:
AdaptabilityAdaptability

 the framework activities will the framework activities will alwaysalways be applied on be applied on
everyevery project ... BUT project ... BUT

 the tasks (and degree of rigor) for each activity the tasks (and degree of rigor) for each activity
will vary based on:will vary based on:
 the type of project the type of project
 characteristics of the projectcharacteristics of the project
 common sense judgment; concurrence of the project teamcommon sense judgment; concurrence of the project team

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 7

The CMMIThe CMMI

 The CMMI de nes each process area in terms of “speci c The CMMI de nes each process area in terms of “speci c
goals” and the “speci c practices” required to achieve goals” and the “speci c practices” required to achieve
these goals.these goals.

 Speci�c goalsSpeci�c goals establish the characteristics that must exist establish the characteristics that must exist
if the activities implied by a process area are to be if the activities implied by a process area are to be
e0ective. e0ective.

 Speci�c practicesSpeci�c practices re ne a goal into a set of process-related re ne a goal into a set of process-related
activities.activities.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 8

Process PatternsProcess Patterns

 Process patterns de ne a set of activities, actions, work Process patterns de ne a set of activities, actions, work
tasks, work products and/or related behaviorstasks, work products and/or related behaviors

 A template is used to de ne a patternA template is used to de ne a pattern
 Typical examples:Typical examples:

 Customer communication (a process activity)Customer communication (a process activity)
 Analysis (an action)Analysis (an action)
 Requirements gathering (a process task)Requirements gathering (a process task)
 Reviewing a work product (a process task)Reviewing a work product (a process task)
 Design model (a work product)Design model (a work product)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 9

Process AssessmentProcess Assessment

 The process should be assessed to ensure that it meets a The process should be assessed to ensure that it meets a
set of basic process criteria that have been shown to be set of basic process criteria that have been shown to be
essential for a successful software engineeringessential for a successful software engineering.

 Many di0erent assessment options are available: Many di0erent assessment options are available:
 SCAMPISCAMPI
 CBA IPICBA IPI
 SPICESPICE
 ISO 9001:2000ISO 9001:2000

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 10

Assessment and ImprovementAssessment and Improvement

Software Process

Software Process

Assessment

is examined by identifies capabilities

and risk of

identifies

modifications to

Software Process

Improvement

Capability

Determination
leads to leads to

motivates

Personal Software Process (PSP)Personal Software Process (PSP)

 Every developer uses some process to build computer Every developer uses some process to build computer
s/w.s/w.

 Process may be haphazard or adhoc.Process may be haphazard or adhoc.

 Watts Humphrey suggests that in order to change an Watts Humphrey suggests that in order to change an
ine0ective personal process , an individual must move ine0ective personal process , an individual must move
through 4 phases.through 4 phases.

 PSP emphasizes PSP emphasizes personal measurement of the personal measurement of the work work
product produced & resultant quality of work product.product produced & resultant quality of work product.

 PSP makes practitioner responsible for Project Planning.PSP makes practitioner responsible for Project Planning. 11

12

Personal Software Process (PSP)Personal Software Process (PSP)

 Recommends ve framework activities:Recommends ve framework activities:
 Planning : resource , size, defect estimates.Planning : resource , size, defect estimates.
 High-level design: External specs for components & component design High-level design: External specs for components & component design
 High-level design review : uncover errors in design.High-level design review : uncover errors in design.
 Development : code compiled tested.Development : code compiled tested.
 Postmortem : using measures & metrics e0ectiveness of process Postmortem : using measures & metrics e0ectiveness of process
determined.determined.

 stresses the need for each software engineer to identify errors stresses the need for each software engineer to identify errors
early and as important, to understand the types of errorsearly and as important, to understand the types of errors

(PSP)(PSP)
 Psp represents a disciplined , metrics –based approach Psp represents a disciplined , metrics –based approach
to S.E.to S.E.

 Problems.Problems.

 Intellectually challenging & demands a level of Intellectually challenging & demands a level of
commitment by practitioners & managers.commitment by practitioners & managers.

 Training is lengthy & training costs are highTraining is lengthy & training costs are high

13

Team Software Process (TSP)Team Software Process (TSP)

 Goal of TSP is to build a self directed project team that Goal of TSP is to build a self directed project team that
organizes itself to produce high quality software.organizes itself to produce high quality software.

 Objectives of TSPObjectives of TSP
 Build self directed teams that plan & track their work 3- Build self directed teams that plan & track their work 3-
20 engg.20 engg.

 Show managers how to coach & motivate their teams & Show managers how to coach & motivate their teams &
sustain peak performance.sustain peak performance.

 Accelerate s/w process improvement by making CMM5Accelerate s/w process improvement by making CMM5
 Normal & expected.Normal & expected.

14

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 15

Team Software Process (TSP)Team Software Process (TSP)

 Each project is “launched” using a “script” that Each project is “launched” using a “script” that
de nes the tasks to be accomplishedde nes the tasks to be accomplished

 Teams are self-directedTeams are self-directed
 Measurement is encouragedMeasurement is encouraged
 Measures are analyzed with the intent of Measures are analyzed with the intent of
improving the team processimproving the team process

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 16

The Primary Goal of Any Software Process: The Primary Goal of Any Software Process:
High QualityHigh Quality

Remember:Remember:

High quality = project timelinessHigh quality = project timeliness

Why?Why?

Less rework!Less rework!

 History: The Agile ManifestoHistory: The Agile Manifesto

On February 11-13, 2001, at The Lodge at Snowbird ski On February 11-13, 2001, at The Lodge at Snowbird ski
resort in the Wasatch mountains of Utah, seventeen resort in the Wasatch mountains of Utah, seventeen
people met to talk, ski, relax, and try to nd common people met to talk, ski, relax, and try to nd common
ground and of course, to eat. What emerged was the �ground and of course, to eat. What emerged was the �
Agile Software Development Manifesto. � �Agile Software Development Manifesto. � �
Representatives from Extreme Programming, SCRUM, Representatives from Extreme Programming, SCRUM,
DSDM, Adaptive Software Development, Crystal, DSDM, Adaptive Software Development, Crystal,
Feature-Driven Development, Pragmatic Programming, Feature-Driven Development, Pragmatic Programming,
and others sympathetic to the need for an alternative to and others sympathetic to the need for an alternative to
documentation driven, heavyweight software documentation driven, heavyweight software
development processes convened. development processes convened.

17

18

What is “Agility”?What is “Agility”?

 E0ective (rapid and adaptive) response to changeE0ective (rapid and adaptive) response to change
 E0ective communication among all stakeholdersE0ective communication among all stakeholders
 Drawing the customer onto the teamDrawing the customer onto the team
 Organizing a team so that it is in control of the Organizing a team so that it is in control of the
work performedwork performed

Yielding …Yielding …
 Rapid, incremental delivery of softwareRapid, incremental delivery of software

Manifesto for Agile Software DevelopmentManifesto for Agile Software Development

We are uncovering better ways of developing We are uncovering better ways of developing
software by doing it and helping others do it. software by doing it and helping others do it.
Through this work we have come to value: Through this work we have come to value:

 Individuals and interactionsIndividuals and interactions over processes and toolover processes and tools s

Working softwareWorking software over comprehensive documentationover comprehensive documentation

Customer collaborationCustomer collaboration over contract negotiationover contract negotiation

Responding to changeResponding to change over following a planover following a plan

 That is, while there is value in the items on the right, That is, while there is value in the items on the right,
we value the items on the left more.we value the items on the left more.

Kent BeckKent Beck James GrenningJames Grenning Robert C. MartinRobert C. Martin
Mike BeedleMike Beedle Jim HighsmithJim Highsmith Steve MellorSteve Mellor

Arie van BennekumArie van Bennekum Andrew HuntAndrew Hunt Ken SchwaberKen Schwaber
Alistair CockburnAlistair Cockburn Ron Je0riesRon Je0ries Je0 SutherlandJe0 Sutherland
Ward CunninghamWard Cunningham Jon KernJon Kern Dave ThomasDave Thomas
Martin FowlerMartin Fowler Brian MarickBrian Marick

 © 2001, the above authors© 2001, the above authors
this declaration may be freely copied in any form,this declaration may be freely copied in any form,

but only in its entirety through this notice.but only in its entirety through this notice.

http://agilemanifesto.org/

 Principles behind the Agile ManifestoPrinciples behind the Agile Manifesto

1.1. Our highest priority is to satisfy the customerOur highest priority is to satisfy the customer
through early and continuous delivery of valuable through early and continuous delivery of valuable
software. software.

2.2. Welcome changing requirements, even late in Welcome changing requirements, even late in
development. Agile processes harness change for the development. Agile processes harness change for the
customer's competitive advantage. customer's competitive advantage.

3.3. Deliver working software frequently, from a couple of Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the weeks to a couple of months, with a preference to the
shorter timescale. shorter timescale.

4.4. Business people and developers must work togetherBusiness people and developers must work together
daily throughout the project. daily throughout the project.

20

5.5. Build projects around motivated individuals. Build projects around motivated individuals.
Give them the environment and support they need, and trust Give them the environment and support they need, and trust
them to get the job done. them to get the job done.

6.6. The most eIcient and e0ective method of conveying The most eIcient and e0ective method of conveying
information to and within a development team is face-to-face information to and within a development team is face-to-face
conversation. conversation.

7.7. Working software is the primary measure of progress.Working software is the primary measure of progress.

8.8. Agile processes promote sustainable development. The Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a sponsors, developers, and users should be able to maintain a
constant pace inde nitely. constant pace inde nitely.

21

9.9. Continuous attention to technical excellence and good design Continuous attention to technical excellence and good design
enhances agility. enhances agility.

10.10. Simplicity--the art of maximizing the amount of work not Simplicity--the art of maximizing the amount of work not
done--is essential. done--is essential.

11.11. The best architectures, requirements, and designs emerge from The best architectures, requirements, and designs emerge from
self-organizing teams. self-organizing teams.

12.12. At regular intervals, the team reLects on how to become more At regular intervals, the team reLects on how to become more
e0ective, then tunes and adjusts its behavior accordingly.e0ective, then tunes and adjusts its behavior accordingly.

22

23

An Agile ProcessAn Agile Process

 Is driven by customer descriptions of what is Is driven by customer descriptions of what is
required (scenarios)required (scenarios)

 Recognizes that plans are short-livedRecognizes that plans are short-lived
 Develops software iteratively with a heavy Develops software iteratively with a heavy
emphasis on construction activitiesemphasis on construction activities

 Delivers multiple ‘software increments’Delivers multiple ‘software increments’
 Adapts as changes occurAdapts as changes occur

Assumptions:
1.It is di�cult to predict in advance the requirements;
2.Phases are interleaved.
3.All the phases are not predictable.

24

Extreme Programming (XP)Extreme Programming (XP)

 The most widely used agile process, originally proposed The most widely used agile process, originally proposed
by Kent Beckby Kent Beck

 XP PlanningXP Planning
 Begins with the creation of “Begins with the creation of “user storiesuser stories””
 Agile team assesses each story and assigns a Agile team assesses each story and assigns a costcost
 Stories are grouped for a Stories are grouped for a deliverable incrementdeliverable increment
 A A commitmentcommitment is made on delivery date is made on delivery date
 After the rst increment “After the rst increment “project velocityproject velocity” is used to help de ne ” is used to help de ne
subsequent delivery dates for other incrementssubsequent delivery dates for other increments

25

Extreme Programming (XP)Extreme Programming (XP)
 XP DesignXP Design

 Follows the Follows the KIS principleKIS principle
 Encourage the use of Encourage the use of CRC cardsCRC cards (see Chapter 8) (see Chapter 8)
 For diIcult design problems, suggests the creation of “For diIcult design problems, suggests the creation of “spike solutionsspike solutions”—a ”—a
design prototypedesign prototype

 Encourages “Encourages “refactoringrefactoring”—an iterative re nement of the internal program ”—an iterative re nement of the internal program
designdesign

 XP CodingXP Coding
 Recommends the Recommends the construction of a unit testconstruction of a unit test for a store for a store beforebefore coding coding
commencescommences

 Encourages “Encourages “pair programmingpair programming””

 XP TestingXP Testing
 All All unit tests are executed dailyunit tests are executed daily
 ““Acceptance tests”Acceptance tests” are de ned by the customer and executed to assess are de ned by the customer and executed to assess
customer visible functionalitycustomer visible functionality

26

Extreme Programming (XP)Extreme Programming (XP)

unit test

continuous integration

acceptance testing

pair

programming

Release

user stories

 values

 acceptance test criteria

iteration plan

simple design

 CRC cards

spike solutions

 prototypes

refactoring

software increment

project velocity computed

27

28

29

30

31

32

	Software Engineering: A Practitioner’s Approach, 6/e Chapter 2 Process: A Generic View copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited.
	A Layered Technology
	A Process Framework
	Framework Activities
	Umbrella Activities
	The Process Model: Adaptability
	The CMMI
	Process Patterns
	Process Assessment
	Assessment and Improvement
	Personal Software Process (PSP)
	Slide 12
	(PSP)
	Team Software Process (TSP)
	Slide 15
	The Primary Goal of Any Software Process: High Quality
	Slide 17
	What is “Agility”?
	Manifesto for Agile Software Development
	Slide 20
	Slide 21
	Slide 22
	An Agile Process
	Extreme Programming (XP)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

