
Agile Processes: eXtreme
Programming

Data taken from
Ganesh.Sambasivam@isoftplc.comak

SDLC 3.0 book; Google;
Scattered Notes
Course Textbook

mailto:Ganesh.Sambasivam@isoftplc.comak

XP's Four Values
• Communication. Most projects fail because of poor

communication. So implement practices that force
communication in a positive way.

• Simplicity. Develop the simplest product that meets
the customer’s needs

• Feedback. Developers must obtain and value feedback
from the customer, from the system, and from each other.
– The same as standard Agile values: value customer

collaboration over contract negotiation.

• Courage. Be prepared to make hard decisions that
support the other principles and practices.

Chapter 3 Agile software development

Extreme Programming

• XP is based on these
– four values and
– twelve practices
– have been extended various ways since XP’s introduction

• Extreme Programming (XP) takes an ‘extreme’ approach to
iterative development.

New versions may be built several times per day;
Increments are delivered to customers approx. every 2 weeks;
All tests must be run for every build and the build is only accepted if

tests run successfully.

15

Chapter 3 Agile software development

XP and Agile Principles

 Incremental development is supported through small,
frequent system releases.

 Customer involvement means full-time customer
engagement with the team.

 People not process through pair programming,
collective ownership and a process that avoids long
working hours.

 Change supported through regular system releases.
 Maintaining simplicity through constant refactoring of

code.

16

Chapter 3 Agile software development

The Extreme Programming Release Cycle

17

User Stories – coming…

Chapter 3 Agile software development

Requirements Scenarios

 In XP, a customer or user is part of the XP team and is
responsible for making decisions on requirements.

 User requirements are expressed as scenarios (via use
cases) or user stories.

 These (User Stories) are often written on cards and the
development team break them down into implementation
tasks.

 These tasks are the basis of schedule and cost estimates.
 The customer chooses the stories for inclusion in the next

release based on their priorities and the schedule
estimates.

20

XP Fundamentals by Kent Beck
• Write unit tests before programming; keeping all tests running

all times.

• Integrating and testing the whole system--several times a day.

• Producing all software in pairs, two programmers at one
screen.

• Starting projects with simple design. Simple design can
evolve.

• Putting a minimal system into production quickly and growing
it in whatever directions prove most valuable.

XP Core Practice #1- The Planning Game

• Business and development cooperate to produce max business
value as quickly as possible.

• The planning game:
– Business comes up with a list of desired features.

– Each feature is written out as a User Story,
• feature has a name, and is described in broad strokes what is required.

– User stories are typically written on 4x6 cards. (You saw a variation in
your book)

– Development estimates how much effort each story will take, and how
much effort the team can produce in a given time interval.

– Business then decides
• order of stories to implement,
• And when and how often to produce a production release of the system.

XP – Core Practice #2: Simple Design
• Simplest possible design to get job done.
• Requirements will change tomorrow, do

what's needed to meet today's requirements

• Design in XP is not a one-time; it is an “all-
the-time” activity. Have design steps in
– release planning
– iteration planning,
– teams engage in quick design sessions and

design revisions through refactoring,

• through the course of the entire project.

XP – Core Practice #3: Metaphor
• Extreme Programming teams develop a common

vision of how the program works, which we call the
"metaphor".

• At its best, the metaphor is a simple evocative
description of how the program works.

• XP teams use
• common system of names to be sure that everyone

understands how the system works
• and where to look to find the functionality you're

looking for,
• or to find the right place to put the functionality

you're about to add.

XP – Core Practice #4:
Simple Design

• Always use the simplest possible design that gets the job
done.

• The requirements will change tomorrow, so only do
what’s needed to meet today’s requirements.

XP – Core Practice #5: Continuous Testing
• XP teams focus on validation of the

software at all times

• Programmers develop software by
writing tests first, and then code that
fulfills the requirements reflected in the
tests.

• Customers provide acceptance tests
that enable them to be certain that the
features they need are provided.

XP – Core Practice #6: Refactoring

• XP Team Refactor out any duplicate
code generated in a coding session.

• Refactoring is simplified due to
extensive use of automated test
cases.

XP – Core Practice #7: Pair Programming
• All production code is written by two programmers

sitting at one machine.
– This practice ensures that all code is reviewed as it is

written and results in better Design, testing and better
code.

• Some programmers object to pair programming
without ever trying it.
– It does take some practice to do well, and you need to do

it well for a few weeks to see the results.
– Ninety percent of programmers who learn pair

programming prefer it, so it is recommended to all teams.
• Pairing, in addition to providing better code and

tests, also serves to communicate knowledge
throughout the team.

Chapter 3 Agile software development

Pair Programming

 In XP, programmers work in pairs, sitting together to
develop code.

 This helps develop common ownership of code and
spreads knowledge across the team.

 It serves as an informal review process as each line of
code is looked at by more than 1 person.

 It encourages refactoring as the whole team can benefit
from this.

 Measurements suggest that development productivity
with pair programming is similar to that of two people
working independently.

34

Chapter 3 Agile software development

Pair Programming

 In pair programming, programmers sit together at the
same workstation to develop the software.

 Pairs are created dynamically so that all team members
work with each other during the development process.

 The sharing of knowledge that happens during pair
programming is very important as it reduces the overall
risks to a project when team members leave.

 Pair programming is not necessarily inefficient and there
is evidence that a pair working together is more efficient
than 2 programmers working separately.

35

Chapter 3 Agile software development

Advantages of Pair Programming

 It supports the idea of collective ownership and
responsibility for the system.
Individuals are not held responsible for problems with the code.

Instead, the team has collective responsibility for resolving these
problems.

 It acts as an informal review process because each line
of code is looked at by at least two people.

 It helps support refactoring, which is a process of
software improvement.
Where pair programming and collective ownership are used,

others benefit immediately from the refactoring so they are likely
to support the process.

36

XP – Core Practice #8: Collective Code
Ownership

• No single person "owns" a module.

• Any developer is expected to be able
to work on any part of the codebase
at any time.

XP – Core Practice #9:
Continuous Integration

• All changes are integrated into the codebase at least daily.
• Unit tests have to run 100% both before and after integration.

– Infrequent integration leads to serious problems on a project.

• Although integration is critical to shipping good working code, the
team is not practiced at it, and often it is delegated to people not
familiar with the whole system.

• Problems creep in at integration time that are not detected by
any of the testing that takes place on an un-integrated system.

• Code freezes mean that you have long time periods when the
programmers could be working on important shippable features,
but that those features must be held back.

XP – Core Practice #10: 40-hour Week

• Programmers go home on time.
– In crunch mode, up to one week of

overtime is allowed.

• Multiple consecutive weeks of
overtime are treated as a sign that
something is very wrong with the
process and/or schedule.

XP – Core Practice #11: On-Site Customer

• Development team has continuous
access to the customer who will
actually be using the system.

• For initiatives with lots of customers,
a customer representative (i.e.
Product Manager) will be designated
for Development team access.

XP – Core Practice #12: Coding Standards

• Everyone codes to the same standards.

• The specifics of the standard are not
important: what is important is that all
of the code looks familiar, in support of
collective ownership.

XP on your own – Supplemental.

XP Values – Summarized.
•XP is a values-based methodology. The
values are Simplicity, Communication,
Feedback and Courage.

•XP’s core values:best summarized in
the following statement by Kent Beck:
Do more of what works and do less
of what doesn’t.

Highlights of the four values itemized:

• Simplicity encourages:
– Delivering the simplest functionality that

meets business needs

– Designing the simplest software that supports
the needed functionality

– Building for today and not for tomorrow

– Writing code that is easy to read, understand,
maintain and modify

Highlights of the four values itemized:

• Communication is accomplished by:
– Collaborative workspaces
– Co-location of development and business space
– Paired development
– Frequently changing pair partners
– Frequently changing assignments
– Public status displays
– Short standup meetings
– Unit tests, demos and oral communication, not

documentation

Highlights of the four values itemized:

• Feedback is provided by:
– Aggressive iterative and incremental releases
– Frequent releases to end users
– Co-location with end users
– Automated unit tests
– Automated functional tests
– Courage is required to:

• Do the right thing in the face of opposition
• Do the practices required to succeed

Conclusion
• Extreme Programming is not a complete template

for the entire delivery organization.
• Rather, XP is a set of best practices for managing

the development team and its interface to the
customer.

• As a process it gives the team the ability to grow,
change and adapt as they encounter different
applications and business needs.

• And more than any other process we have
encountered Extreme Programming has the power
to transform the entire delivery
organization, not just the development team.

	Agile Processes: eXtreme Programming
	XP's Four Values
	Extreme Programming
	XP and Agile Principles
	The Extreme Programming Release Cycle
	Requirements Scenarios
	XP Fundamentals by Kent Beck
	XP Core Practice #1- The Planning Game
	XP – Core Practice #2: Simple Design
	XP – Core Practice #3: Metaphor
	XP – Core Practice #4: Simple Design
	XP – Core Practice #5: Continuous Testing
	XP – Core Practice #6: Refactoring
	XP – Core Practice #7: Pair Programming
	Pair Programming
	Slide 16
	Advantages of Pair Programming
	XP – Core Practice #8: Collective Code Ownership
	XP – Core Practice #9: Continuous Integration
	XP – Core Practice #10: 40-hour Week
	XP – Core Practice #11: On-Site Customer
	XP – Core Practice #12: Coding Standards
	XP on your own – Supplemental.
	XP Values – Summarized.
	Highlights of the four values itemized:
	Slide 26
	Slide 27
	Conclusion
	PowerPoint Presentation

