
SOFTWARE

ENGINEERING

Course Objectives

● To learn and understand the principles of Software Engineering.

● To be acquainted with methods of capturing, specifying, visualizing and analyzing software

requirements.

● To apply design and testing principles to software project development.

● To understand project management through life cycle of the project.

Course Outcomes:

At the end of the course students will be able to-

● CO1: Analyze software requirements and formulate design solution for a software.

● CO2: Design applicable solutions in one or more application domains using software engineering

approaches that integrate ethical, social, legal and economic concerns.

● CO3: Apply new software models, techniques and technologies to bring out innovative and novelistic

solutions for the growth of the society in all aspects and evolving into their continuous professional

development.

● CO4: Model and design User interface and component-level.

● CO5: Identify and handle risk management and software configuration management.

● CO6: Utilize knowledge of software testing approaches, approaches to verification and validation.

● CO7: Construct software of high quality – software that is reliable, and that is reasonably easy to

understand, modify and maintain efficient, reliable, robust and cost-effective software solutions.

Examination Scheme and Marks:

Mid-Semester(TH): 30 Marks
End-Semester(TH): 70 Marks

UNIT I

Introduction to
Software Engineering

and
Software Process

Models

Unit I Contents

Unified Process, Agile software development: Agile methods, plan driven and
agile development.

Software Process: A Generic Process Model, defining a Framework Activity,
Identifying a Task Set, Process Patterns, Process Assessment an
Improvement, Prescriptive Process Models, The Waterfall Model, Incremental
Process Models, Evolutionary Process Models, Concurrent Models, A Final
Word on Evolutionary Processes.

Software Engineering Fundamentals: Introduction to software engineering, The
Nature of Software, Defining Software, Software Engineering Practice.

THE NATURE OF SOFTWARE

What is it?
Computer software is the product that software professionals build and then support
over the long term. It encompasses programs that execute within a computer of any
size and architecture, content that is presented as the computer programs execute,
and descriptive information in both hard copy and virtual forms that encompass
virtually any electronic media.

Who does it?
Software engineers build and support software, and virtually everyone in the
industrialized world uses it either directly or indirectly.

Software is:

(1) instructions (computer programs) that when executed provide desired
features, function, and performance;
(2) data structures that enable the programs to adequately manipulate
information, and
(3) descriptive information in both hard copy and virtual forms that
describes the operation and use of the programs.

Engineering:

Engineering is the application of scientific and practical knowledge to invent, design, build, maintain,
and improve frameworks, processes, etc.

SYSTEM SOFTWARE

Software Application Domains

Compilers, editors, and file
management utilities

APPLICATION SOFTWARE

Microsoft Office

EMBEDDED SOFTWARE

washing machines, satellites,
microwaves

ENGINEERING/SCIENTIFIC

SOFTWARE
MATLAB, AUTOCAD

PRODUCT-LINE SOFTWARE

WEB/MOBILE APPLICATIONS

World Wide Web

ARTIFICIAL INTELLIGENCE

SOFTWARE
Google Cloud Machine Learning
Engine, Amazon Alexa

The Changing

Nature of Software

● Web-Apps

● Mobile Applications

● Cloud Computing

● Product Line Software

SOFTWARE

ENGINEERING

Software engineering encompasses

a process, a collection of methods

(practice) and an array of tools that

allow professionals to build high-

quality computer software.

SOFTWARE

ENGINEERING

(1) The application of a systematic,

disciplined, quantifiable approach to

the development, operation, and

maintenance of software; that is, the

application of engineering to software.

(2) The study of approaches as in (1).

SOFTWARE

ENGINEERING
The IEEE definition:
• Software Engineering: The application of a systematic,

disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the
application of engineering to software.

• Engineering approach to develop software.
Building Construction Analogy.

• Systematic collection of past experience:
Techniques,
Methodologies,
Guidelines.

Why is Software Engineering required?

Software Engineering is required due to the following reasons:
- To manage Large software
- For more Scalability
- Cost Management
- To manage the dynamic nature of software
- For better quality Management

Need of Software Engineering

The necessity of software engineering appears because of a higher rate of progress in user requirements
and the environment on which the program is working.

- Huge Programming
- Adaptability
- Cost
- Dynamic Nature
- Quality Management

Importance of Software Engineering

Software engineering is a layered technology.

Software engineering is a layered technology.

• Any engineering approach (including software engineering) must rest on an organizational
commitment to quality.

• TQM, Six Sigma or any similar philosophies foster a continuous process improvement culture,
and it is this culture that ultimately leads to the development of increasingly more effective
approaches to software engineering.

• The bedrock that supports software engineering is a quality focus

Software engineering is a layered technology.

• Foundation layer is Process Layer
• Definition of Process : a series of actions or steps taken in order to achieve a particular end.
• Process Model : A framework i.e. responsible for milestones, quality, work products
• Methods: Technical ― “how to” s. Methods encompass a broad array of tasks that include

communication, requirements analysis, design modelling, program construction, testing, and
support.

• Tools : Automated or simulated support for s/w development. When tools are integrated so
that information created by one tool can be used by another, a system for the support of
software development, called computer-aided software engineering, is established.

THE SOFTWARE

PROCESS

A process is not a rigid prescription

for how to build computer software.

• A process is a collection of activities, actions, and tasks that are
performed when some work product is to be created.
- An activity strives to achieve a broad objective (e.g., communication
with stakeholders) and is applied regardless of the application domain,
size of the project, complexity of the effort, or degree of rigor with which
software engineering is to be applied.
- An action (e.g., architectural design) encompasses a set of tasks that
produce a major work product (e.g., an architectural model).
- A task focuses on a small, but well-defined objective (e.g., conducting a
unit test) that produces a tangible outcome.

- A process is not a rigid prescription for how to build computer software.

- The intent is always to deliver software in a timely manner and with sufficient

quality to satisfy those who have sponsored its creation and those who will use it.

- Includes umbrella activities which protect and control the process.

- Process Framework has 5 activities:

1. Communication

2. Planning

3. Modeling

4. Construction

5. Deployment

The

Process

Framework

- The process of framework defines a small set of activities that are

applicable to all types of projects.

- The software process framework is a collection of task sets.

- Task sets consist of a collection of small work tasks,

project milestones, work productivity

and software quality assurance points.

A generic process framework encompasses five activities which are
given below one by one:

1. Communication: This framework activity involves heavy communication and collaboration with the
customer (and other stakeholders) and encompasses requirements gathering and other related activities.
2. Planning: This activity establishes a plan for the software engineering work that follows. It describes
the technical tasks to be conducted, the risks that are likely, the resources that will be required, the work
products to be produced and a work schedule.
3. Modeling: This activity encompasses the creation of models that allow the developer and the customer
to better understand software requirements and the design that will achieve those requirements.
4. Construction: This activity combines code generation (either manual or automated) and the testing that
is required to uncover errors in the code.
5. Deployment: The software is delivered to the customer who evaluates the delivered product and
provides feedback based on evaluation.

Umbrella activities include

1. Software project tracking and control
2. Risk management
3. Software Quality Assurance (SQA
4. Formal Technical Reviews (FTR)
5. Measurement
6. Software Configuration Management (SCM)
7. Reusability management
8. Work product preparation and production

1. Software project tracking and control- In this activity, the developing team
accesses project plan and compares it with the predefined schedule. If these
project plans do not match with the predefined schedule, then the required actions
are taken to maintain the schedule.

2. Risk management- Risk is an event that may or may not occur.
If the event occurs, then it causes some unwanted outcome. Hence, proper risk management is required.

3. Software Quality Assurance (SQA)- SQA is the planned and systematic pattern of activities which
are required to give a guarantee of software quality.
For example, during the software development meetings are conducted at every stage of development to
find out the defects and suggest improvements to produce good quality software.

4. Formal Technical Reviews (FTR)- FTR is a meeting conducted by the technical staff.
The motive of the meeting is to detect quality problems and suggest improvements.
The technical person focuses on the quality of the software from the customer point of view.

5. Measurement- Measurement consists of the effort required to measure the software.
The software cannot be measured directly. It is measured by direct and indirect measures.
Direct measures like cost, lines of code, size of software etc.
Indirect measures such as quality of software which is measured by some other factor. Hence, it is an
indirect measure of software.

6. Software Configuration Management (SCM)- It manages the effect of change throughout the
software process.

7. Reusability management- It defines the criteria for reuse the product.
The quality of software is good when the components of the software are developed for certain
application and are useful for developing other applications.

8. Work product preparation and production- It consists of the activities that are needed to create the
documents, forms, lists, logs and user manuals for developing a software.

Process Flow:

1. Linear Process Flow
A linear process flow executes each of the five framework activities in sequence, beginning with
communication and culminating with deployment.

Process Flow:

1. Iterative Process Flow

An iterative process flow repeats one or more of the activities before proceeding to the next.

Process Flow:

1. Evolutionary Process Flow
An evolutionary process flow executes the activities in a “circular” manner.

Process Flow:

1. Parallel Process Flow

A parallel process flow executes one or more activities in parallel with other activities.

The

Process

Model
The goal of a software process model
is to provide guidance for controlling
and coordinating the tasks to achieve
the end product and objectives as
effectively as possible.

The Process Model

- A software process model is an abstraction of the software development process.
- The models specify the stages and order of a process. So, think of this as a representation of the order
of activities of the process and the sequence in which they are performed.

- A model will define the following:
1. The tasks to be performed
2. The input and output of each task
3. The pre and post conditions for each task
4. The flow and sequence of each task

Factors in choosing a software process

If you know your requirements well, it will be easier to select a model that best matches your
needs. You need to keep the following factors in mind when selecting your software process
model:
1. Project requirements
2. Project size
3. Project complexity
4. Cost of delay
5. Customer involvement
6. Familiarity with technology
7. Project resources

PROCESS MODEL

Generic Process Model

1. The Waterfall Model
2. Incremental Process
model
3. RAD model

Prescriptive Process Models

PROCESS

MODEL

1. The prototyping model
2. The spiral model
3. Concurrent development
model

Evolutionary Process Models

Generic process model

The Generic process model is an abstraction of the software development process. It
specifies the stages and order of a process.

Prescriptive Process Models
The following framework activities are carried out irrespective of the process model chosen by the
organization.

1. Communication
2. Planning
3. Modeling
4. Construction
5. Deployment

The name 'prescriptive' is given because the model prescribes a set of activities, actions, tasks,
quality assurance and change the mechanism for every project.

Prescriptive Process Models: 1. The Waterfall Model

- The waterfall model is also called as 'Linear sequential model' or 'Classic life cycle model'.
- In this model, each phase is fully completed before the

beginning of the next phase.
- This model is used for the small projects.
- In this model, feedback is taken after each phase
to ensure that the project is on the right path.

- Testing part starts only after the development is
complete.

Prescriptive Process Models: 1. The Waterfall Model

-> Advantages of waterfall model
1. The waterfall model is simple and easy to understand, implement, and use.
2. All the requirements are known at the beginning of the project, hence it is easy to manage.
3. It avoids overlapping of phases because each phase is completed at once.
4. This model works for small projects because the requirements are understood very well.
5. This model is preferred for those projects where the quality is more important as compared to

the cost of the project.

-> Disadvantages of the waterfall model
1. This model is not good for complex and object oriented projects.
2. It is a poor model for long projects.
3. The problems with this model are uncovered, until the software testing.
4. The amount of risk is high.

Prescriptive Process Models: 2. Incremental Process model

- The incremental model combines the elements of waterfall model and they are applied in an
iterative fashion.

- The first increment in this model is generally a core product.
- Each increment builds the product and submits
it to the customer for any suggested modifications.

- The next increment implements on the
customer's suggestions and add additional
requirements in the previous increment.

- This process is repeated until the product is
finished.

For example,
the word-processing software is developed
using the incremental model.

Prescriptive Process Models: 2. Incremental Process model

Advantages of incremental model
- This model is flexible because the cost of development is low and initial product delivery is
faster.
- It is easier to test and debug during the smaller iteration.
- The working software generates quickly and early during the software life cycle.
- The customers can respond to its functionalities after every increment.
Disadvantages of the incremental model
- The cost of the final product may cross the cost estimated initially.
- This model requires a very clear and complete planning.
- The planning of design is required before the whole system is broken into small increments.
- The demands of customer for the additional functionalities after every increment causes problem
during the system architecture.

Prescriptive Process Models: 3. RAD model

- RAD is a Rapid Application Development model.
- Using the RAD model, software product is developed in a short period of time.
- The initial activity starts with the communication between

customer and developer.
- Planning depends upon the initial requirements and
then the requirements are divided into groups.

- Planning is more important to work together on
different modules.

Evolutionary Process Models

The Generic process model is an abstraction of the software development process. It
specifies the stages and order of a process.
- Evolutionary models are iterative type models.
- They allow to develop more complete versions of the software.

Following are the evolutionary process models.

1. The prototyping model
2. The spiral model
3. Concurrent development model

Evolutionary Process Models: 1. The prototyping model

1. The prototype model requires that before carrying out the development of actual software, a
working prototype of the system should be built.
2. A prototype is a toy implementation of the system.
3. A prototype usually turns out to be a very crude version of the actual system, possible
exhibiting limited functional capabilities, low reliability, and inefficient performance as compared to
actual software.

Advantage of Prototype Model:

1. Reduce the risk of incorrect user requirement
2. Good where requirement are changing/uncommitted
3. Regular visible process aids management
4. Support early product marketing
5. Reduce Maintenance cost.
6. Errors can be detected much earlier as the system is made side by side.

Disadvantage of Prototype Model

1. An unstable/badly implemented prototype often becomes the final product.
2. Require extensive customer collaboration

Costs customer money
Needs committed customer
Difficult to finish if customer withdraw
May be too customer specific, no broad market

3. Difficult to know how long the project will last.
4. Easy to fall back into the code and fix without proper requirement analysis, design, customer evaluation,
and feedback.
5. Prototyping tools are expensive.
6. Special tools & techniques are required to build a prototype.
7. It is a time-consuming process.

Evolutionary Process Models: 2. The Spiral model

1. Spiral model is a risk driven process model.
2. It is used for generating the software projects.
3. In spiral model, an alternate solution is provided if the risk is found in the risk analysis, then alternate
solutions are suggested and implemented.
4. It is a combination of prototype and sequential model or waterfall model.
5. In one iteration all activities are done, for large project's the output is small.

Advantages of Spiral Model:

Below are some advantages of the Spiral Model.
1. Risk Handling: The projects with many unknown risks that occur as the development proceeds, in
that case, Spiral Model is the best development model to follow due to the risk analysis and risk
handling at every phase.
2. Good for large projects: It is recommended to use the Spiral Model in large and complex projects.
3. Flexibility in Requirements: Change requests in the Requirements at later phase can be
incorporated accurately by using this model.
4. Customer Satisfaction: Customer can see the development of the product at the early phase of the
software development and thus, they habituated with the system by using it before completion of the
total product.

Disadvantages of Spiral Model:

Below are some main disadvantages of the spiral model.
1. Complex: The Spiral Model is much more complex than other SDLC models.
2. Expensive: Spiral Model is not suitable for small projects as it is expensive.
3. Too much dependability on Risk Analysis: The successful completion of the project is very much
dependent on Risk Analysis. Without very highly experienced experts, it is going to be a failure to
develop a project using this model.
4. Difficulty in time management: As the number of phases is unknown at the start of the project, so
time estimation is very difficult.

Evolutionary Process Models: 3. The Concurrent model

1. The concurrent development model is called as concurrent model.
2. The communication activity has completed in the first iteration and exits in the awaiting changes
state.
3. The modeling activity completed its initial communication and then go to the underdevelopment
state.
4. If the customer specifies the change in the requirement, then the modeling activity moves from the
under development state into the awaiting change state.
5. The concurrent process model activities moving from one state to another state

Advantages of the concurrent development model

1. This model is applicable to all types of software development processes.
2. It is easy for understanding and use.
3. It gives immediate feedback from testing.
4. It provides an accurate picture of the current state of a project.

Disadvantages of the concurrent development model

1. It needs better communication between the team members. This may not be achieved all the time.
2. It requires to remember the status of the different activities.

Unified Process

Unified process (UP) is an architecture centric, use case driven, iterative and incremental

development process. UP is also referred to as the unified software development process.

Unified Process

- Unified process (UP) is an architecture centric, use case driven, iterative and incremental
development process. UP is also referred to as the unified software development process.
- The Unified Process recognizes the importance of customer communication and streamlined methods
for describing the customer’s view of a system.
- It suggests a process flow that is iterative and incremental, providing the evolutionary feel that is
essential in modern software development.
Phases of the Unified Process

This process divides the development process into five phases:
1. Inception
2. Elaboration
3. Conception
4. Transition
5. Production

1. Inception –
-> Communication and planning are main.
-> Identifies Scope of the project using use-case model allowing managers to estimate costs and time
required.
-> Customers requirements are identified and then it becomes easy to make a plan of the project.
-> Project plan, Project goal, risks, use-case model, Project description, are made.
-> Project is checked against the milestone criteria and if it couldn’t pass these criteria then project can
be either cancelled or redesigned.

2. Elaboration –
-> Planning and modeling are main.

-> Detailed evaluation, development plan is carried out and diminish the risks.

-> Revise or redefine use-case model (approx. 80%), business case, risks.

-> Again, checked against milestone criteria and if it couldn’t pass these criteria then again project can be cancelled or
redesigned.

-> Executable architecture baseline.

3. Construction –
-> Project is developed and completed.

-> System or source code is created and then testing is done.

-> Coding takes place.

4. Transition –
-> Final project is released to public.

-> Transit the project from development into production.

-> Update project documentation.

-> Beta testing is conducted.

-> Defects are removed from project based on feedback from public.

.

5. Production –
-> Final phase of the model.

-> Project is maintained and updated accordingly

