Software Engineering: A Practitioner’s Approach,
6/e

Chapter 8
Analysis Modeling

copyright © 1996, 2001, 2005
R.S. Pressman & Associates, Inc.

For University Use Only
May be reproduced ONLY for student use at the university level
when used in conjunction with Software Engineering: A Practitioner's Approach.
Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Requirements Analysis

" Requirements analysis
" specifies software’s operational characteristics
" indicates software's interface with other system elements
" establishes constraints that software must meet

" Requirements analysis allows the software engineer

(called an analyst or modeler in this role) to:
® elaborate on basic requirements established during earlier
requirement engineering tasks
" build models that depict user scenarios, functional activities,
problem classes and their relationships, system and class
behavior, and the flow of data as it is transformed.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

analysis
model

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Rules of Thumb

® The model should focus on requirements that are visible within the
problem or business domain. The level of abstraction should be
relatively high.

® Fach element of the analysis model should add to an overall
understanding of software requirements and provide insight into
the information domain, function and behavior of the system.

" Delay consideration of infrastructure and other non-functional
models until design.

® Minimize coupling throughout the system.

" Be certain that the analysis model provides value to all
stakeholders.

® Keep the model as simple as it can be.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Domain Analysis

Software domain analysis is the identification, analysis,
and specification of common requirements from a
specific application domain, typically for reuse on
multiple projects within that application domain . . .

[Object-oriented domain analysis is | the identification,
analysis, and specification of common, reusable
capabilities within a specific application domain, in
terms of common objects, classes, subassemblies, and
frameworks . . .

Donald Firesmith

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Domain Analysis

" Define the domain to be investigated.

" Collect a representative sample of applications in
the domain.

® Analyze each application in the sample.
® Develop an analysis model for the objects.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Data Modeling

" examines data objects independently of
processing

® {focuses attention on the data domain

B creates a model at the customer’s level of
abstraction

® indicates how data objects relate to one
another

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

What is a Data Object?

Object —something that is described by a set
of attributes (data items) and that will be
manipulated within the software (system)

each instance of an object (e.g., a book)
can be identified uniquely (e.g., ISBN #)

each plays a necessary role in the system
i.e., the system could not function without
access to instances of the object

each is described by attributes that are
themselves data items

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Typical Objects

external entities (printer, user, sensor)

things (e.g, reports, displays, signals)
occurrences or events (e.g., interrupt, alarm)
roles (e.g., manager, engineer, salesperson)
organizational units ~ (e.g., division, team)
places (e.g., manufacturing floor)

structures (e.g., employee record)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Data Objects and Attributes

A data object contains a set of attributes that
act as an aspect, quality, characteristic, or
descriptor of the object

object: automobile

attributes:
make
model

body type
price
options code

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

10

What is a Relationship?

relationship —indicates “connectedness”;
a "fact" that must be "remembered"

by the system and cannot or is not computed
or derived mechanically

" several instances of a relationship can
exist

" objects can be related in many different
ways

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

11

ERD Notation

One common form:
. (0, m) S
Ob]&Ctl relationship 1)

Anhother common form:

m 0 relationship T objectz

attribute

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

12

Building an ERD

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

13

The ERD: An Example

request
&Wy) for service

(1,1)

(1,n) work

(1,1)
selected (1,w) m
I (RY)) tasks \‘V

B
\/

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

standard
task table

14

Object-Oriented Concepts

® Must be understood to apply class-based
elements of the analysis model

" Key concepts:
® Classes and objects
" Attributes and operations
® Encapsulation and instantiation
" Inheritance

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 15

Classes

» object-oriented thinking begins with the
definition of a class, often defined as:
- template
- generalized description
- “blueprint” ... describing a collection of
similar items
- ametaclass (also called a superclass)
establishes a hierarchy of classes

- once a class of items is defined, a
specific instance of the class can be
identified

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Building a Class
| ciassname

attributes:

@ operations

attributes:

operations:

=

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

17

What is a Class?

occurrences roles
things organizational units
places

external entities
structures

attributes:

operations:

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

18

Encapsulation/Hiding

The object encapsulates
both data and the logical
procedures required to
manipulate the data

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

19

Class Hierarchy

PieceOfFurniture (superclass)

o

Table Chair ”Chable"

0000

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

20

Methods

(a.k.a. Operations, Services)

An executable procedure that is
encapsulated in a class and is designed
to operate on one or more data attributes
that are defined as part of the class.

A method is invoked
via message passing.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

21

Scenario-Based Modeling

“|Use-cases | are simply an aid to defining what exists
outside the system (actors) and what should be
performed by the system (use-cases).” Ivar Jacobson
(1) What should we write abouit?
(2
(3

(4) How: should we organize the description?

How much should we write about it?

FHow: detailed should we make our description?

)
)
)
)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and

are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Use-Cases

" ascenario that describes a “thread of usage” for
a system

" actors represent roles people or devices play as
the system functions

" users can play a number of different roles for a
given scenario

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

23

Developing a Use-Case

® What are the main tasks or functions that are performed by the
actor?

® What system information will the the actor acquire, produce or
change?

" Will the actor have to inform the system about changes in the
external environment?

® What information does the actor desire from the system?
® Does the actor wish to be informed about unexpected changes?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

24

Use-Case Diagram

SafeHome

Access camera
surveillance via the cameras
Internet

Configure SafeHome
system parameters

homeowner

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Activity Diagram

Supplements the use-case by providing a diagrammatic
representation of procedural flow

enter password
and user ID

valid passwords/ ID invalid passwords/ ID

select specific lect .
. ra icon
camera - thumbnail select camera ico

view camera outpul
in labelled window,

prompt for
another view

exit this f u\ction
D

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 26

Swimlane Diagrams

Allows the modeler to represent the flow of activities described by the use-case and at the
same time indicate which actor (if there are multiple actors involved in a specific use-case)
or analysis class has responsibility for the action described by an activity rectangle

enter password

valid passwords/ID - l
invalid

passwords/ID
select major function
other function prompt for reentry
mayalso be

selected

input tries
select surveillance - ’ remain

no input
tries remain

thumbnail views select aspecific camera

exit this
function
see

another
camera

These courseware materials are tq
are provided with permission by

‘s Approach, 6/e and

27

Flow-Oriented Modeling

Represents how data objects are transformed as they
move through the system

A data flow diagram (DFD) is the diagrammatic form
that is used

Considered by many to be an “old school” approach, flow-
oriented modeling continues to provide a view of the
system that is unique—it should be used to supplement
other analysis model elements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

28

The Flow Model

Every computer-based system is an
information transtform

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

29

Flow Modeling Notation

external entity

Process

/ data flow

data store

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

30

External Entity

Alpreducer or consumer of data

Examples: a person, a device, a sensor

Another example: computer-based
system

Data must always originate somewhere
and must always be sent to something

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

31

Process

ta transformer (changes input
utput)

Examples: compute taxes, determine area,

format report, display graph

Data must always be processed in some
way to achieve system function

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

32

Data Flow

———

Data flows through a system, beginning
as input and be transformed into output.

base

\ compute

triangle

e area

area

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

59

Data Stores

Data is often stored for later use.

sensor #
\ sensor #, type,
look-up location, age
repnss rew data
sensor number

sensor data

type,
location, age

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

34

Data Flow Diagramming:
Guidelines

" all icons must be labeled with meaningtul
names

® the DFD evolves through a number of
levels of detail

" always begin with a context level diagram
(also called level 0)

" always show external entities at level 0
" always label data flow arrows
® do not represent procedural logic

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

35

Constructing a DFD—I

" review the data model to isolate data objects
and use a grammatical parse to determine
“operations”

" determine external entities (producers and
consumers of data)

® create a level 0 DFD

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

36

Level 0 DFD Example

processing

request requested
\ - video
digital signal
video [Peemd

processor
~ NTSC
video signal

source

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Constructing a DFD—II

® write a narrative describing the transform
" parse to determine next level transforms

" “balance” the flow to maintain data flow
continuity

" develop a level 1 DFD
" use a 1:5 (approx.) expansion ratio

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

38

The Data Flow Hierarchy

< f

.
S °°b
d) —
O-Y

level 1

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

=t

Flow Modeling Notes

® each bubble is refined until it does just
one thing

" the expansion ratio decreases as the
number of levels increase

® most systems require between 3 and 7
levels for an adequate flow model

" asingle data flow item (arrow) may be
expanded as levels increase (data
dictionary provides information)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

40

Process Specification (PSPEC)

ﬁ

ﬁ

harauve

PSEUCOCOUENEIDIT)

EYUaUonS
v) el
iz]0)|2

diagramsiand/erehnans;

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

41

DFDs: A Look Ahead
‘:‘~‘~

lysi del .
analysis mode ‘\ Ma in tO

desigh model

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

42

Control Flow Diagrams

" Represents “events” and the processes that manage
events

" An “event” is a Boolean condition that can be
ascertained by:

listing all sensors that are "read" by the software.
listing all interrupt conditions.

listing all "switches" that are actuated by an operator.
listing all data conditions.

recalling the noun/verb parse that was applied to the processing
narrative, review all "control items" as possible CSPEC
inputs/outputs.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

X]

The Control Model

B the control flow diagram is "superimposed" on the DFD
and shows events that control the processes noted in
the DFD

B control flows—events and control items—are noted by
dashed arrows

B avertical bar 1mp11es an input to or output from a control
spec (CSPEC) — a separate specification that
escribes how control is handled

B 2 dashed arrow entering a vertical bar is an input to the
CSPEC

B 2 dashed arrow leaving a process implies a data
condition

B 2 dashed arrow entering a process implies a control
input read directly by the process

B control flows do not physically activate/deactivate the
processes—this is done via the CSPEC

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Control Flow Diagram

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

45

Control Specification (CSPEC)

The CSPEC can be:
B state diagram N\
(sequential spec)

B state transition table .)
> combinatorial spec

B decision tables

B activation tables y

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 46

Guidelines for Building a CSPEC

list all sensors that are "read" by the software

list all interrupt conditions

list all "switches" that are actuated by the operator

list all data conditions

recalling the noun-verb parse that was applied to the
software statement of scope, review all "control items"
as possible CSPEC inputs/outputs

describe the behavior of a system by identifying its
states; identify how each state is reach and defines

the transitions between states

focus on possible omissions ... a very common error in

specitying control, e.g., ask: "Is there any other way I
can get to this state or exit from it?"

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

47

Class-Based Modeling

" Identity analysis classes by examining the
problem statement

" Use a “grammatical parse” to isolate potential
classes

" Jdentity the attributes of each class
" Identity operations that manipulate the attributes

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

48

Analysis Classes

External entities (e.g., other systems, devices, people) that produce or consume
information to be used by a computer-based system.

Things (e.g, reports, displays, letters, signals) that are part of the information
domain for the problem.

Occurrences or events (e.g., a property transfer or the completion of a series of robot
movements) that occur within the context of system operation.

Roles (e.g., manager, engineer, salesperson) played by people who interact with the
system.

Organizational units (e.g., division, group, team) that are relevant to an application.

Places (e.g., manufacturing floor or loading dock) that establish the context of the
problem and the overall function of the system.

Structures (e.g., sensors, four-wheeled vehicles, or computers) that define a class of
objects or related classes of objects.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

49

Selecting Classes—Criteria

‘retained information
l/needed services

n/multiple attributes

z/common attributes
z/common operations

(essential requirements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

50

Class Diagram
Class name

systemiID
verificationPhoneNumber .
systemStatus attributes
delayTime

telephoneNumber

masterPassword

temporaryPassword

numberTries

program()

display()

reset() g
query() Operatlons
modify()

call()

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

These courseware mat
are provided with per

Class Diagram

type
name
outsideDimensions

determineType ()
positionFloorplan
scale()

change color()

is placed within}

is part of

Camera

type type

ID wallDimensions
location

fieldView

panAngle

ZoomSetting determineType ()

determineType () computeDimensions ()

translateLocation ()
displayID()
displayView()
displayZoom()

is used to buildp» <« is used to build

A
WallSegment

is used to build
type type type

startCoordinates startCoordinates startCoordinates
stopCoordinates stopCoordinates stopCoordinates
nextWallSement nextWindow nextDoor

determineType () determineType () determineType ()
draw() draw() draw()

52

CRC Modeling

® Analysis classes have “responsibilities”

" Responsibilities are the attributes and operations encapsulated by
the class

® Analysis classes collaborate with one another

® Collaborators are those classes that are required to provide a
class with the information needed to complete a responsibility.

" In general, a collaboration implies either a request for
information or a request for some action.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 53

CRC Modeling

Collaborator:

defines floor plan name/type
manages floor plan positioning

scales floor plan for display
scales floor plan for display

shows position of video cameras

incorporates walls, doors and Windo*vs

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

54

Class Types

" Entity classes, also called model or business classes, are extracted directly
from the statement of the problem (e.g., FloorPlan and Sensor).

" Boundary classes are used to create the interface (e.g., interactive screen or
printed reports) that the user sees and interacts with as the software is
used.

" Controller classes manage a “unit of work” [UMLO03] from start to finish.
That is, controller classes can be designed to manage

® the creation or update of entity objects;

" the instantiation of boundary objects as they obtain information from
entity objects;

" complex communication between sets of objects;

® validation of data communicated between objects or between the user
and the application.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

S5

Responsibilities

" System intelligence should be distributed across classes
to best address the needs ot the problem

® Each responsibility should be stated as generally as
possible

B Information and the behavior related to it should reside
within the same class

" Information about one thing should be localized with a
single class, not distributed across multiple classes.

® Responsibilities should be shared among related classes,
when appropriate.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 56

Collaborations

" C(lasses fulfill their responsibilities in one of two ways:

® A class can use its own operations to manipulate its own attributes, thereby
tulfilling a particular responsibility, or

® aclass can collaborate with other classes.
" Collaborations identify relationships between classes
" Collaborations are identified by determining whether a class can fulfill each
responsibility itself
® three different generic relationships between classes | WIR90 |:
" the is-part-of relationship
" the has-knowledge-of relationship
" the depends-upon relationship

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 57

Composite Aggregate Class

PlayerHead PlayerBody PlayerArms PlayerLegs

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Reviewing the CRC Model

® All participants in the review (of the CRC model) are given a subset of the CRC model index
cards.

® Cards that collaborate should be separated (i.e., no reviewer should have two cards that
collaborate).
® All use-case scenarios (and corresponding use-case diagrams) should be organized into
categories.
® The review leader reads the use-case deliberately.

® As the review leader comes to a named object, she passes a token to the person holding the
corresponding class index card.
® When the token is passed, the holder of the class card is asked to describe the responsibilities
noted on the card.
® The group determines whether one (or more) of the responsibilities satisties the use-case
requirement.

" If the responsibilities and collaborations noted on the index cards cannot accommodate the use-
case, modifications are made to the cards.

® This may include the definition of new classes (and corresponding CRC index cards) or the
specification of new or revised responsibilities or collaborations on existing cards.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Associations and Dependencies

® Two analysis classes are often related to one another in
some fashion
® In UML these relationships are called associations
® Associations can be refined by indicating multiplicity (the term
cardinality is used in data modeling
" In many instances, a client-server relationship exists
between two analysis classes.

® In such cases, a client-class depends on the server-class in some
way and a dependency relationship is established

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

60

Multiplicity

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

61

Dependencies

<<access=>>

{password}

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

62

Analysis Packages

® Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that
packages them as a grouping

" The plus sign preceding the analysis class name in each
package indicates that the classes have public visibility
and are therefore accessible from other packages.

® Other symbols can precede an element within a package.
A minus sign indicates that an element is hidden from
all other packages and a # symbol indicates that an
element is accessible only to packages contained within a
given package.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 63

Analysis Packages

Environment - -~ ~

+Tree

+Landscape

+Road

+Wall

+Bridge

+Building

+VisualEffect

+Scene +RulesOfMovement
+ConstraintsOnAction

Characters

+Player
+Protagonist
+Antagonist
+SupportingRole

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

64

Behavioral Modeling

" The behavioral model indicates how software will respond to
external events or stimuli. To create the model, the analyst must
perform the following steps:

® Evaluate all use-cases to fully understand the sequence of interaction within
the system.

" Identify events that drive the interaction sequence and understand how
these events relate to specific objects.

" Create a sequence for each use-case.
® Build a state diagram for the system.
" Review the behavioral model to verify accuracy and consistency.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 65

State Representations

" In the context of behavioral modeling, two different
characterizations of states must be considered:
" the state of each class as the system performs its function and
" the state of the system as observed from the outside as the
system performs its function

" The state of a class takes on both passive and active
characteristics [CHA93|.

" A passive state is simply the current status of all of an object’s
attributes.

® The active state of an object indicates the current status of the
object as it undergoes a continuing transformation or processing.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

State Diagram for the ControlPanel Class

timer<lockedTime

timer >lockedTime

password = incorrect
& numberOfTries < maxTries

reading .l numberOfTries >maxTries

password _
entered do: validatePassword

password = correct

selecting

activation successful

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

The States of a System

B state—a set of observable circum-stances
that characterizes the behavior of a
system at a given time

B state transition—the movement from one
state to another

® event—an occurrence that causes the
system to exhibit some predictable form
of behavior

® action—process that occurs as a
consequence of making a transition

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

68

Behavioral Modeling

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

69

Sequence Diagram

control panel sensors

- request lookup
result
password = correct

|
|
|
|
|
|
|
numberOfTries > maxTries ’m
' I
|
|
|
|
|
|
|
1
|
|
|
|

password entered

e

request activation

>

C) iimer > lockedTime
|

selecting
activation successful

activation successful

Figure 8.27 Sequence diagram (partial) for SafeHome security function

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Writing the Software Specification

Everyone knew exactly
what had to be done

until someone wrote it
down!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

71

pecification Guidelines

use a layered format that provides increasing detail
as the "layers" deepen

use consistent graphical notation and apply textual
terms consistently (stay away from aliases)

be sure to define all acronyms

be sure to include a table of contents; ideally,
include an index and/or a glossary

write in a simple, unambiguous style (see "editing
suggestions" on the following pages)

always put yourself in the reader's position, "Would
| be able to understand this if | wasn't intimately
familiar with the system™?"

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

pecification Guidelines

Be on the lookout for persuasive connectors, ask why?
keys: certainly, therefore, clearly, obviously, it follows that ...

Watch out for vague terms
keys: some, sometimes, often, usually,ordinarily, most, mostly ...

When lists are given, but not completed, be sure all items are understood
keys: etc., and so forth, and so on, such as

Be sure stated ranges don't contain unstated assumptions
e.g., Valid codes range from 10 to 100. Integer? Real? Hex?

Beware of vague verbs such as handled, rejected, processed, ...

Beware "passive voice" statements
e.g., The parameters are initialized. By what?

Beware "dangling" pronouns
e.g., The I/O module communicated with the data validation module and
its contol flag is set. Whose control flag?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

Specification Guidelines

When a term is explicitly defined in one place, try
substituting the definition forother occurrences of the term

When a structure is described in words, draw a picture

When a structure is described with a picture, try to redraw
the picture to emphasize different elements of the structure

When symbolic equations are used, try expressing their
meaning in words

When a calculation is specified, work at least two
examples

Look for statements that imply certainty, then ask for proof
keys; always, every, all, none, never

Search behind certainty statements—be sure restrictions
or limitations are realistic

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005

	Software Engineering: A Practitioner’s Approach, 6/e Chapter 8 Analysis Modeling copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited.
	Requirements Analysis
	A Bridge
	Rules of Thumb
	Domain Analysis
	Slide 6
	Data Modeling
	What is a Data Object?
	Typical Objects
	Data Objects and Attributes
	What is a Relationship?
	ERD Notation
	Building an ERD
	The ERD: An Example
	Object-Oriented Concepts
	Classes
	Building a Class
	What is a Class?
	Encapsulation/Hiding
	Class Hierarchy
	Methods (a.k.a. Operations, Services)
	Scenario-Based Modeling
	Use-Cases
	Developing a Use-Case
	Use-Case Diagram
	Activity Diagram
	Swimlane Diagrams
	Flow-Oriented Modeling
	The Flow Model
	Flow Modeling Notation
	External Entity
	Process
	Data Flow
	Data Stores
	Data Flow Diagramming: Guidelines
	Constructing a DFD—I
	Level 0 DFD Example
	Constructing a DFD—II
	The Data Flow Hierarchy
	Flow Modeling Notes
	Process Specification (PSPEC)
	DFDs: A Look Ahead
	Control Flow Diagrams
	The Control Model
	Control Flow Diagram
	Control Specification (CSPEC)
	Guidelines for Building a CSPEC
	Class-Based Modeling
	Analysis Classes
	Selecting Classes—Criteria
	Class Diagram
	Slide 52
	CRC Modeling
	Slide 54
	Class Types
	Responsibilities
	Collaborations
	Composite Aggregate Class
	Reviewing the CRC Model
	Associations and Dependencies
	Multiplicity
	Dependencies
	Analysis Packages
	Slide 64
	Behavioral Modeling
	State Representations
	State Diagram for the ControlPanel Class
	The States of a System
	Slide 69
	Sequence Diagram
	Writing the Software Specification
	Specification Guidelines
	Slide 73
	Slide 74

