
These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 1

Software Engineering: A Practitioner’s Approach, Software Engineering: A Practitioner’s Approach,
6/e6/e

Chapter 8Chapter 8
Analysis ModelingAnalysis Modeling

copyright © 1996, 2001, 2005

R.S. Pressman & Associates, Inc.

For University Use Only

May be reproduced ONLY for student use at the university level

when used in conjunction with Software Engineering: A Practitioner's Approach.

Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 2

Requirements AnalysisRequirements Analysis

 Requirements analysis Requirements analysis
 speci�es software’s operational characteristicsspeci�es software’s operational characteristics
 indicates software's interface with other system elements indicates software's interface with other system elements
 establishes constraints that software must meetestablishes constraints that software must meet

 Requirements analysis allows the software engineer Requirements analysis allows the software engineer
(called an (called an analystanalyst or or modelermodeler in this role) to: in this role) to:
 elaborate on basic requirements established during earlier elaborate on basic requirements established during earlier

requirement engineering tasksrequirement engineering tasks
 build models that depict user scenarios, functional activities, build models that depict user scenarios, functional activities,

problem classes and their relationships, system and class problem classes and their relationships, system and class
behavior, and the !ow of data as it is transformed. behavior, and the !ow of data as it is transformed.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 3

A BridgeA Bridge

system

description

analysis

model

design

model

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 4

Rules of ThumbRules of Thumb
 The model should focus on requirements that are visible within the The model should focus on requirements that are visible within the

problem or business domain. The level of abstraction should be problem or business domain. The level of abstraction should be
relatively high. relatively high.

 Each element of the analysis model should add to an overall Each element of the analysis model should add to an overall
understanding of software requirements and provide insight into understanding of software requirements and provide insight into
the information domain, function and behavior of the system.the information domain, function and behavior of the system.

 Delay consideration of infrastructure and other non-functional Delay consideration of infrastructure and other non-functional
models until design. models until design.

 Minimize coupling throughout the system. Minimize coupling throughout the system.
 Be certain that the analysis model provides value to all Be certain that the analysis model provides value to all

stakeholders. stakeholders.
 Keep the model as simple as it can be. Keep the model as simple as it can be.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 5

Domain AnalysisDomain Analysis

Software domain analysis is the identi�cation, analysis, Software domain analysis is the identi�cation, analysis,
and speci�cation of common requirements from a and speci�cation of common requirements from a
speci�c application domain, typically for reuse on speci�c application domain, typically for reuse on
multiple projects within that application domain . . . multiple projects within that application domain . . .
[Object-oriented domain analysis is] the identi�cation, [Object-oriented domain analysis is] the identi�cation,
analysis, and speci�cation of common, reusable analysis, and speci�cation of common, reusable
capabilities within a speci�c application domain, in capabilities within a speci�c application domain, in
terms of common objects, classes, subassemblies, and terms of common objects, classes, subassemblies, and
frameworks . . .frameworks . . .

Donald Firesmith

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 6

Domain AnalysisDomain Analysis

 De�ne the domain to be investigated.De�ne the domain to be investigated.
 Collect a representative sample of applications in Collect a representative sample of applications in

the domain.the domain.
 Analyze each application in the sample.Analyze each application in the sample.
 Develop an analysis model for the objects. Develop an analysis model for the objects.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 7

Data ModelingData Modeling

 examines data objects independently of examines data objects independently of
processingprocessing

 focuses attention on the data domainfocuses attention on the data domain
 creates a model at the customer’s level of creates a model at the customer’s level of

abstractionabstraction
 indicates how data objects relate to one indicates how data objects relate to one

anotheranother

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 8

What is a Data Object?What is a Data Object?

ObjectObject ——something that is described by a setsomething that is described by a set
of attributes (data items) and that will be of attributes (data items) and that will be
manipulated within the software (system)manipulated within the software (system)

each each instanceinstance of an object (e.g., a book) of an object (e.g., a book)
can be identi�ed uniquely (e.g., ISBN #) can be identi�ed uniquely (e.g., ISBN #)

each plays a necessary role in the systemeach plays a necessary role in the system
i.e., the system could not function without i.e., the system could not function without
access to instances of the objectaccess to instances of the object

each is described by attributes that are each is described by attributes that are
themselves data itemsthemselves data items

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 9

Typical ObjectsTypical Objects

external entitiesexternal entities (printer, user, sensor)(printer, user, sensor)
thingsthings (e.g, reports, displays, signals) (e.g, reports, displays, signals)
occurrences or eventsoccurrences or events (e.g., interrupt, alarm)(e.g., interrupt, alarm)
rolesroles (e.g., manager, engineer, salesperson)(e.g., manager, engineer, salesperson)

organizational unitsorganizational units (e.g., division, team)(e.g., division, team)

placesplaces (e.g., manufacturing !oor) (e.g., manufacturing !oor)

structuresstructures (e.g., employee record)(e.g., employee record)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 10

Data Objects and AttributesData Objects and Attributes

A data object contains a set of attributes that A data object contains a set of attributes that
act as an aspect, quality, characteristic, or act as an aspect, quality, characteristic, or
descriptor of the objectdescriptor of the object

object: automobileobject: automobile

attributes:attributes:
 makemake
 modelmodel
 body typebody type
 priceprice
 options codeoptions code

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 11

What is a Relationship?What is a Relationship?

relationshiprelationship ——indicates “connectedness”; indicates “connectedness”;
a "fact" that must be "remembered" a "fact" that must be "remembered"
by the system and cannot or is not computed by the system and cannot or is not computed
or derived mechanicallyor derived mechanically

 several instances of a relationship can several instances of a relationship can
existexist

 objects can be related in many di;erent objects can be related in many di;erent
waysways

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 12

ERD NotationERD Notation

(0, m) (1, 1)

objectobject objectobjectrelationshiprelationship
11 22

One common form:One common form:

(0, m)(0, m)

(1, 1)(1, 1)

objectobject11 objectobject22
relationshiprelationship

Another common form:Another common form:

attributeattribute

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 13

Building an ERDBuilding an ERD

 Level 1—model all data objects (entities) and their Level 1—model all data objects (entities) and their
“connections” to one another“connections” to one another

 Level 2—model all entities and relationshipsLevel 2—model all entities and relationships
 Level 3—model all entities, relationships, and the Level 3—model all entities, relationships, and the

attributes that provide further depthattributes that provide further depth

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 14

The ERD: An ExampleThe ERD: An Example

(1,1)(1,1) (1,m)(1,m)
placesplacesCustomerCustomer

requestrequest
for servicefor service

generatesgenerates (1,n)(1,n)

(1,1)(1,1)

workwork
orderorder

workwork
taskstasks

materialsmaterials

consistsconsists
ofof

listslists

(1,1)(1,1)
(1,w)(1,w)

(1,1)

(1,i)(1,i)

selectedselected
fromfrom

standardstandard
task tabletask table

(1,w)(1,w)

(1,1)(1,1)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 15

Object-Oriented ConceptsObject-Oriented Concepts

 Must be understood to apply class-based Must be understood to apply class-based
elements of the analysis modelelements of the analysis model

 Key concepts:Key concepts:
 Classes and objectsClasses and objects
 Attributes and operationsAttributes and operations
 Encapsulation and instantiationEncapsulation and instantiation
 InheritanceInheritance

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 16

ClassesClasses

• object-oriented thinking begins with the object-oriented thinking begins with the
de�nition of a de�nition of a class,class, often de�ned as: often de�ned as:

– templatetemplate
– generalized descriptiongeneralized description
– “ “blueprint” ... describing a collection of blueprint” ... describing a collection of

similar itemssimilar items

• a a metaclassmetaclass (also called a (also called a superclasssuperclass))
establishes a hierarchy of classesestablishes a hierarchy of classes

• once a class of items is de�ned, a once a class of items is de�ned, a
speci�c instance of the class can be speci�c instance of the class can be
identi�ed identi�ed

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 17

Building a ClassBuilding a Class

class name

attributes:

operations:

attributes:

operations

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 18

What is a Class?What is a Class?

external entities

things

occurrences roles

organizational units

places

structures

class name

attributes:

operations:

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 19

Encapsulation/HidingEncapsulation/Hiding
The object encapsulates
both data and the logical
procedures required to
manipulate the data

Achieves “information hiding”

method
1

data

method
2

method
4

method
5

method
6

method
3

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 20

Class HierarchyClass Hierarchy

ChairTable Desk ”Chable"

instances of Chair

PieceOfFurniture (superclass)

subclasses of the

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 21

MethodsMethods
(a.k.a. Operations, Services)(a.k.a. Operations, Services)
An executable procedure that is
encapsulated in a class and is designed
to operate on one or more data attributes
that are de�ned as part of the class.
A method is invoked
via message passing.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 22

Scenario-Based ModelingScenario-Based Modeling

““[Use-cases] are simply an aid to de�ning what exists [Use-cases] are simply an aid to de�ning what exists
outside the system (actors) and what should be outside the system (actors) and what should be
performed by the system (use-cases).” Ivar Jacobsonperformed by the system (use-cases).” Ivar Jacobson

(1) What should we write about?(1) What should we write about?

(2) How much should we write about it?(2) How much should we write about it?

(3) How detailed should we make our description? (3) How detailed should we make our description?

(4) How should we organize the description?(4) How should we organize the description?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 23

Use-CasesUse-Cases

 a scenario that describes a “thread of usage” for a scenario that describes a “thread of usage” for
a systema system

 actorsactors represent roles people or devices play as represent roles people or devices play as
the system functionsthe system functions

 usersusers can play a number of di;erent roles for a can play a number of di;erent roles for a
given scenariogiven scenario

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 24

Developing a Use-CaseDeveloping a Use-Case

 What are the main tasks or functions that are performed by the What are the main tasks or functions that are performed by the
actor?actor?

 What system information will the the actor acquire, produce or What system information will the the actor acquire, produce or
change?change?

 Will the actor have to inform the system about changes in the Will the actor have to inform the system about changes in the
external environment?external environment?

 What information does the actor desire from the system?What information does the actor desire from the system?
 Does the actor wish to be informed about unexpected changes?Does the actor wish to be informed about unexpected changes?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 25

Use-Case DiagramUse-Case Diagram

homeowner

Access camera

surveillance via the

Internet

Configure SafeHome

system parameters

Set alarm

cameras

SafeHome

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 26

Activity DiagramActivity Diagram
Supplements the use-case by providing a diagrammatic Supplements the use-case by providing a diagrammatic
representation of procedural !owrepresentation of procedural !ow

enter password

and user ID

select major function

valid passwords/ ID

prompt for reentry

invalid passwords/ ID

input tries remain

no input

tries remain

select surveillance

other functions

may also be

selected

thumbnail views select a specif ic camera

select camera icon

prompt for

another view

select specific

camera - thumbnails

exit this function
see another camera

view camera output

in labelled window

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 27

Swimlane DiagramsSwimlane Diagrams
Allows the modeler to represent the !ow of activities described by the use-case and at the Allows the modeler to represent the !ow of activities described by the use-case and at the
same time indicate which actor (if there are multiple actors involved in a speci�c use-case) same time indicate which actor (if there are multiple actors involved in a speci�c use-case)
or analysis class has responsibility for the action described by an activity rectangleor analysis class has responsibility for the action described by an activity rectangle

enter password

and user ID

select major function

valid passwords/ ID

prompt for reentry

invalid

passwords/ ID

input tries

remain

no input

tries remain

select surveillance

other functions

may also be

selected

thumbnail views select a specif ic camera

select camera icon

generate video

output

select specific

camera - thumbnails

exit this

function

see

another

camera

homeowner c amera int erf ac e

prompt for

another view
view camera output

in labelled window

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 28

Flow-Oriented ModelingFlow-Oriented Modeling

Represents how data objects are transformed as they Represents how data objects are transformed as they
move through the systemmove through the system

A A data !ow diagram (DFD)data !ow diagram (DFD) is the diagrammatic form is the diagrammatic form
that is usedthat is used

Considered by many to be an ‘old school’ approach, !ow-Considered by many to be an ‘old school’ approach, !ow-
oriented modeling continues to provide a view of the oriented modeling continues to provide a view of the
system that is unique—it should be used to supplement system that is unique—it should be used to supplement
other analysis model elementsother analysis model elements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 29

The Flow ModelThe Flow Model

Every computer-based system is an Every computer-based system is an
information transforminformation transform

computercomputer
basedbased

systemsystem
inputinput outputoutput

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 30

Flow Modeling NotationFlow Modeling Notation

external entityexternal entity

processprocess

data flowdata flow

data storedata store

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 31

External EntityExternal Entity

A producer or consumer of dataA producer or consumer of data

Examples: a person, a device, a sensorExamples: a person, a device, a sensor

Another example: computer-basedAnother example: computer-based
systemsystem

Data must always originate somewhereData must always originate somewhere
and must always be sent to somethingand must always be sent to something

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 32

ProcessProcess

A data transformer (changes inputA data transformer (changes input
to output)to output)

Examples: compute taxes, determine area,Examples: compute taxes, determine area,
format report, display graph format report, display graph

Data must always be processed in some Data must always be processed in some
way to achieve system functionway to achieve system function

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 33

Data FlowData Flow

Data flows through a system, beginningData flows through a system, beginning

as input and be transformed into output.as input and be transformed into output.

computecompute

triangle triangle

areaarea

basebase

heightheight

areaarea

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 34

Data StoresData Stores

DataData is often stored for later use.is often stored for later use.

look-uplook-up

sensorsensor

datadata

sensor #sensor #

report requiredreport required

sensor #, type, sensor #, type,

location, agelocation, age

sensor datasensor data

sensor numbersensor number

type, type,

location, agelocation, age

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 35

Data Flow Diagramming:Data Flow Diagramming:
GuidelinesGuidelines

 all icons must be labeled with meaningful all icons must be labeled with meaningful
namesnames

 the DFD evolves through a number of the DFD evolves through a number of
levels of detaillevels of detail

 always begin with a context level diagram always begin with a context level diagram
(also called level 0)(also called level 0)

 always show external entities at level 0always show external entities at level 0
 always label data !ow arrowsalways label data !ow arrows
 do not represent procedural logicdo not represent procedural logic

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 36

Constructing a DFD—IConstructing a DFD—I

 review the data model to isolate data objects review the data model to isolate data objects
and use a grammatical parse to determine and use a grammatical parse to determine
“operations”“operations”

 determine external entities (producers and determine external entities (producers and
consumers of data)consumers of data)

 create a level 0 DFDcreate a level 0 DFD

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 37

Level 0 DFD ExampleLevel 0 DFD Example

useruser
processing processing

requestrequest

videovideo
sourcesource NTSCNTSC

video signalvideo signal

digitaldigital
videovideo

processorprocessor

requestedrequested
videovideo
signalsignal

monitormonitor

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 38

Constructing a DFD—IIConstructing a DFD—II

 write a narrative describing the transformwrite a narrative describing the transform
 parse to determine next level transformsparse to determine next level transforms
 ““balance” the !ow to maintain data !ow balance” the !ow to maintain data !ow

continuitycontinuity
 develop a level 1 DFDdevelop a level 1 DFD
 use a 1:5 (approx.) expansion ratiouse a 1:5 (approx.) expansion ratio

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 39

The Data Flow HierarchyThe Data Flow Hierarchy

PP
aa bb

xx yy

p1p1

p2p2

p3p3

p4p4 55

aa

bb

cc

dd
ee

ff

gg

level 0level 0

level 1level 1

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 40

Flow Modeling NotesFlow Modeling Notes

 each bubble is re�ned until it does just each bubble is re�ned until it does just
one thingone thing

 the expansion ratio decreases as the the expansion ratio decreases as the
number of levels increasenumber of levels increase

 most systems require between 3 and 7 most systems require between 3 and 7
levels for an adequate !ow modellevels for an adequate !ow model

 a single data !ow item (arrow) may be a single data !ow item (arrow) may be
expanded as levels increase (data expanded as levels increase (data
dictionary provides information)dictionary provides information)

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 41

Process Speci9cation (PSPEC)Process Speci9cation (PSPEC)

PSPECPSPEC

narrativenarrative

pseudocode (PDL)pseudocode (PDL)

equationsequations

tablestables

diagrams and/or chartsdiagrams and/or charts

bubblebubble

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 42

Maps intoMaps into

DFDs: A Look AheadDFDs: A Look Ahead

analysis modelanalysis model

design modeldesign model

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 43

Control Flow DiagramsControl Flow Diagrams

 Represents “Represents “eventsevents” and the processes that manage ” and the processes that manage
eventsevents

 An “event” is a Boolean condition that can be An “event” is a Boolean condition that can be
ascertained by:ascertained by:

 listing all sensors that are "read" by the software.listing all sensors that are "read" by the software.
 listing all interrupt conditions.listing all interrupt conditions.
 listing all "switches" that are actuated by an operator.listing all "switches" that are actuated by an operator.
 listing all data conditions.listing all data conditions.
 recalling the noun/verb parse that was applied to the processing recalling the noun/verb parse that was applied to the processing

narrative, review all "control items" as possible CSPEC narrative, review all "control items" as possible CSPEC
inputs/outputs.inputs/outputs.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 44

The Control ModelThe Control Model
the control !ow diagram is "superimposed" on the DFD the control !ow diagram is "superimposed" on the DFD
and shows events that control the processes noted in and shows events that control the processes noted in
the DFDthe DFD

control !ows—events and control items—are noted by control !ows—events and control items—are noted by
dashed arrowsdashed arrows

a vertical bar implies an input to or output from a control a vertical bar implies an input to or output from a control
spec (CSPEC) — a separate speci�cation that spec (CSPEC) — a separate speci�cation that
describes how control is handleddescribes how control is handled

a dashed arrow entering a vertical bar is an input to the a dashed arrow entering a vertical bar is an input to the
CSPECCSPEC

a dashed arrow leaving a process implies a data a dashed arrow leaving a process implies a data
conditioncondition

a dashed arrow entering a process implies a control a dashed arrow entering a process implies a control
input read directly by the processinput read directly by the process

control !ows do not physically activate/deactivate the control !ows do not physically activate/deactivate the
processes—this is done via the CSPECprocesses—this is done via the CSPEC

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 45

Control Flow DiagramControl Flow Diagram

read
operator

input manage
copying

reload
process

perform
problem

diagnosis

create
user

displays

empty

jammed

full

display panel enabled

beeper on/o%

start

problem
light

copies done

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 46

Control Speci9cation (CSPEC)Control Speci9cation (CSPEC)

The CSPEC can be:The CSPEC can be:

state diagram state diagram
(sequential spec)(sequential spec)

state transition tablestate transition table

decision tables decision tables

activation tablesactivation tables

combinatorial speccombinatorial spec

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 47

Guidelines for Building a CSPECGuidelines for Building a CSPEC
list all sensors that are "read" by the softwarelist all sensors that are "read" by the software

list all interrupt conditionslist all interrupt conditions

list all "switches" that are actuated by the operatorlist all "switches" that are actuated by the operator

list all data conditionslist all data conditions

recalling the noun-verb parse that was applied to therecalling the noun-verb parse that was applied to the
software statement of scope, review all "control items"software statement of scope, review all "control items"
as possible CSPEC inputs/outputsas possible CSPEC inputs/outputs

describe the behavior of a system by identifying its describe the behavior of a system by identifying its
states; identify how each state is reach and de�nes states; identify how each state is reach and de�nes
the transitions between statesthe transitions between states

focus on possible omissions ... a very common error in focus on possible omissions ... a very common error in
specifying control, e.g., ask: "Is there any other way I specifying control, e.g., ask: "Is there any other way I
can get to this state or exit from it?"can get to this state or exit from it?"

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 48

Class-Based ModelingClass-Based Modeling

 Identify analysis classes by examining the Identify analysis classes by examining the
problem statementproblem statement

 Use a “grammatical parse” to isolate potential Use a “grammatical parse” to isolate potential
classesclasses

 Identify the attributes of each classIdentify the attributes of each class
 Identify operations that manipulate the attributesIdentify operations that manipulate the attributes

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 49

Analysis ClassesAnalysis Classes
 External entitiesExternal entities (e.g., other systems, devices, people) that produce or consume (e.g., other systems, devices, people) that produce or consume

information to be used by a computer-based system.information to be used by a computer-based system.
 ThingsThings (e.g, reports, displays, letters, signals) that are part of the information (e.g, reports, displays, letters, signals) that are part of the information

domain for the problem.domain for the problem.
 Occurrences or eventsOccurrences or events (e.g., a property transfer or the completion of a series of robot (e.g., a property transfer or the completion of a series of robot

movements) that occur within the context of system operation.movements) that occur within the context of system operation.
 RolesRoles (e.g., manager, engineer, salesperson) played by people who interact with the (e.g., manager, engineer, salesperson) played by people who interact with the

system.system.
 Organizational unitsOrganizational units (e.g., division, group, team) that are relevant to an application. (e.g., division, group, team) that are relevant to an application.
 PlacesPlaces (e.g., manufacturing !oor or loading dock) that establish the context of the (e.g., manufacturing !oor or loading dock) that establish the context of the

problem and the overall function of the system.problem and the overall function of the system.
 StructuresStructures (e.g., sensors, four-wheeled vehicles, or computers) that de�ne a class of (e.g., sensors, four-wheeled vehicles, or computers) that de�ne a class of

objects or related classes of objects.objects or related classes of objects.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 50

Selecting Classes—CriteriaSelecting Classes—Criteria

needed servicesneeded services

multiple attributesmultiple attributes

common attributescommon attributes

common operationscommon operations

essential requirementsessential requirements

retained informationretained information

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 51

Class DiagramClass Diagram
System

program()

display()

reset()

query()

modify()

call()

systemID

verificationPhoneNumber

systemStatus

delayTime

telephoneNumber

masterPassword

temporaryPassword

numberTries

Class name

attributes

operations

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 52

Class DiagramClass Diagram
FloorPlan

determineType ()
positionFloorplan

scale()
change color()

type
name
outsideDimensions

Camera

determineType ()

translateLocation ()

displayID()

displayView()

displayZoom()

type

ID

location

fieldView

panAngle

ZoomSetting

WallSegment

type

startCoordinates

stopCoordinates

nextWallSement

determineType ()

draw()

Window

type

startCoordinates

stopCoordinates

nextWindow

determineType ()
draw()

is placed within

Wall

type

wallDimensions

determineType ()
computeDimensions ()

Door

type

startCoordinates

stopCoordinates

nextDoor

determineType ()
draw()

is part of

is used to buildis used to build

is used to build

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 53

CRC ModelingCRC Modeling

 Analysis classes have “responsibilities”Analysis classes have “responsibilities”
 ResponsibilitiesResponsibilities are the attributes and operations encapsulated by are the attributes and operations encapsulated by

the classthe class

 Analysis classes collaborate with one anotherAnalysis classes collaborate with one another
 CollaboratorsCollaborators are those classes that are required to provide a are those classes that are required to provide a

class with the information needed to complete a responsibility. class with the information needed to complete a responsibility.
 In general, a collaboration implies either a request for In general, a collaboration implies either a request for

information or a request for some action.information or a request for some action.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 54

CRC ModelingCRC Modeling

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class: FloorPlan

Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 55

Class TypesClass Types
 Entity classesEntity classes, also called, also called model model or or businessbusiness classes, are extracted directly classes, are extracted directly

from the statement of the problem (e.g., FloorPlan and Sensor). from the statement of the problem (e.g., FloorPlan and Sensor).

 Boundary classesBoundary classes are used to create the interface (e.g., interactive screen or are used to create the interface (e.g., interactive screen or
printed reports) that the user sees and interacts with as the software is printed reports) that the user sees and interacts with as the software is
used. used.

 Controller classesController classes manage a “unit of work” [UML03] from start to �nish. manage a “unit of work” [UML03] from start to �nish.
That is, controller classes can be designed to manage That is, controller classes can be designed to manage
 the creation or update of entity objects; the creation or update of entity objects;
 the instantiation of boundary objects as they obtain information from the instantiation of boundary objects as they obtain information from

entity objects; entity objects;
 complex communication between sets of objects; complex communication between sets of objects;
 validation of data communicated between objects or between the user validation of data communicated between objects or between the user

and the application. and the application.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 56

ResponsibilitiesResponsibilities

 System intelligence should be distributed across classes System intelligence should be distributed across classes
to best address the needs of the problemto best address the needs of the problem

 Each responsibility should be stated as generally as Each responsibility should be stated as generally as
possiblepossible

 Information and the behavior related to it should reside Information and the behavior related to it should reside
within the same classwithin the same class

 Information about one thing should be localized with a Information about one thing should be localized with a
single class, not distributed across multiple classes.single class, not distributed across multiple classes.

 Responsibilities should be shared among related classes, Responsibilities should be shared among related classes,
when appropriate. when appropriate.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 57

CollaborationsCollaborations

 Classes ful�ll their responsibilities in one of two ways:Classes ful�ll their responsibilities in one of two ways:
 A class can use its own operations to manipulate its own attributes, thereby A class can use its own operations to manipulate its own attributes, thereby

ful�lling a particular responsibility, or ful�lling a particular responsibility, or
 a class can collaborate with other classes.a class can collaborate with other classes.

 Collaborations identify relationships between classesCollaborations identify relationships between classes
 Collaborations are identi�ed by determining whether a class can ful�ll each Collaborations are identi�ed by determining whether a class can ful�ll each

responsibility itselfresponsibility itself
 three di;erent generic relationships between classes [WIR90]: three di;erent generic relationships between classes [WIR90]:

 the the is-part-ofis-part-of relationshiprelationship
 the the has-knowledge-ofhas-knowledge-of relationship relationship
 the the depends-upondepends-upon relationshiprelationship

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 58

Composite Aggregate ClassComposite Aggregate Class

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 59

Reviewing the CRC ModelReviewing the CRC Model
 All participants in the review (of the CRC model) are given a subset of the CRC model index All participants in the review (of the CRC model) are given a subset of the CRC model index

cards.cards.
 Cards that collaborate should be separated (i.e., no reviewer should have two cards that Cards that collaborate should be separated (i.e., no reviewer should have two cards that

collaborate).collaborate).
 All use-case scenarios (and corresponding use-case diagrams) should be organized into All use-case scenarios (and corresponding use-case diagrams) should be organized into

categoriescategories..
 The review leader reads the use-case deliberatelyThe review leader reads the use-case deliberately..

 As the review leader comes to a named object, she passes a token to the person holding the As the review leader comes to a named object, she passes a token to the person holding the
corresponding class index card.corresponding class index card.

 When the token is passed, the holder of the class card is asked to describe the responsibilities When the token is passed, the holder of the class card is asked to describe the responsibilities
noted on the cardnoted on the card..
 The group determines whether one (or more) of the responsibilities satis�es the use-case The group determines whether one (or more) of the responsibilities satis�es the use-case

requirement.requirement.
 If the responsibilities and collaborations noted on the index cards cannot accommodate the use-If the responsibilities and collaborations noted on the index cards cannot accommodate the use-

case, modi�cations are made to the cardscase, modi�cations are made to the cards..
 This may include the de�nition of new classes (and corresponding CRC index cards) or the This may include the de�nition of new classes (and corresponding CRC index cards) or the

speci�cation of new or revised responsibilities or collaborations on existing cards.speci�cation of new or revised responsibilities or collaborations on existing cards.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 60

Associations and DependenciesAssociations and Dependencies

 Two analysis classes are often related to one another in Two analysis classes are often related to one another in
some fashionsome fashion
 In UML these relationships are called In UML these relationships are called associationsassociations
 Associations can be re�ned by indicatingAssociations can be re�ned by indicating multiplicitymultiplicity (the term (the term

cardinalitycardinality is used in data modelingis used in data modeling

 In many instances, a client-server relationship exists In many instances, a client-server relationship exists
between two analysis classes. between two analysis classes.
 In such cases, a client-class depends on the server-class in some In such cases, a client-class depends on the server-class in some

way and a way and a dependency relationshipdependency relationship is established is established

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 61

MultiplicityMultiplicity

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 62

DependenciesDependencies

CameraDisplayWindow

{password}

<<access>>

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 63

Analysis PackagesAnalysis Packages

 Various elements of the analysis model (e.g., use-cases, Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that analysis classes) are categorized in a manner that
packages them as a groupingpackages them as a grouping

 The plus sign preceding the analysis class name in each The plus sign preceding the analysis class name in each
package indicates that the classes have public visibility package indicates that the classes have public visibility
and are therefore accessible from other packages.and are therefore accessible from other packages.

 Other symbols can precede an element within a package. Other symbols can precede an element within a package.
A minus sign indicates that an element is hidden from A minus sign indicates that an element is hidden from
all other packages and a # symbol indicates that an all other packages and a # symbol indicates that an
element is accessible only to packages contained within a element is accessible only to packages contained within a
given package.given package.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 64

Analysis PackagesAnalysis Packages

Environment

+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

Characters

+Player
+Protagonist
+Antagonist
+SupportingRole

RulesOfTheGame

+RulesOfMovement
+ConstraintsOnAction

package name

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 65

Behavioral ModelingBehavioral Modeling

 The behavioral model indicates how software will respond to The behavioral model indicates how software will respond to
external events or stimuli. To create the model, the analyst must external events or stimuli. To create the model, the analyst must
perform the following steps:perform the following steps:

 Evaluate all use-cases to fully understand the sequence of interaction within Evaluate all use-cases to fully understand the sequence of interaction within
the system.the system.

 Identify events that drive the interaction sequence and understand how Identify events that drive the interaction sequence and understand how
these events relate to speci�c objects.these events relate to speci�c objects.

 Create a sequence for each use-case.Create a sequence for each use-case.
 Build a state diagram for the system.Build a state diagram for the system.
 Review the behavioral model to verify accuracy and consistency.Review the behavioral model to verify accuracy and consistency.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 66

State RepresentationsState Representations

 In the context of behavioral modeling, two di;erent In the context of behavioral modeling, two di;erent
characterizations of states must be considered: characterizations of states must be considered:
 the state of each class as the system performs its function andthe state of each class as the system performs its function and
 the state of the system as observed from the outside as the the state of the system as observed from the outside as the

system performs its functionsystem performs its function
 The state of a class takes on both passive and active The state of a class takes on both passive and active

characteristics [CHA93]. characteristics [CHA93].
 A A passive statepassive state is simply the current status of all of an object’s is simply the current status of all of an object’s

attributes.attributes.
 The The active stateactive state of an object indicates the current status of the of an object indicates the current status of the

object as it undergoes a continuing transformation or processing. object as it undergoes a continuing transformation or processing.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 67

State Diagram for the ControlPanel ClassState Diagram for the ControlPanel Class

reading

locked

selecting

password

entered

comparing

password = incorrect

& numberOfTries < maxTries

password = correct

activation successful

key hit

do: validatePassword

numberOfTries > maxTries

timer < lockedTime

timer > lockedTime

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 68

The States of a SystemThe States of a System
 statestate—a set of observable circum-stances —a set of observable circum-stances

that characterizes the behavior of a that characterizes the behavior of a
system at a given timesystem at a given time

 state transitionstate transition—the movement from one —the movement from one
state to anotherstate to another

 eventevent—an occurrence that causes the —an occurrence that causes the
system to exhibit some predictable form system to exhibit some predictable form
of behaviorof behavior

 actionaction—process that occurs as a —process that occurs as a
consequence of making a transitionconsequence of making a transition

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 69

Behavioral ModelingBehavioral Modeling

 make a list of the di;erent states of a system make a list of the di;erent states of a system
(How does the system behave?)(How does the system behave?)

 indicate how the system makes a transition indicate how the system makes a transition
from one state to another (How does the from one state to another (How does the
system change state?)system change state?)
 indicate eventindicate event
 indicate actionindicate action

 draw a draw a state diagram or a sequence diagramstate diagram or a sequence diagram

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 70

Sequence DiagramSequence Diagram

homeowner control panel sensorssystem sensors

system

ready

reading

request lookup
comparing

result

password entered

password = correct

request activation

activation successful

locked
numberOfTries > maxTries

selecting

timer > lockedTime
A

A

Figure 8.27 Sequence diagram (partial) for SafeHome security function

activation successful

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 71

Writing the Software Speci9cationWriting the Software Speci9cation

Everyone knew exactly
what had to be done
until someone wrote it
down!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 72

Speci9cation GuidelinesSpeci9cation Guidelines
use a layered format that provides increasing detail
as the "layers" deepen

use consistent graphical notation and apply textual
terms consistently (stay away from aliases)

be sure to de�ne all acronyms

be sure to include a table of contents; ideally,
include an index and/or a glossary

write in a simple, unambiguous style (see "editing
suggestions" on the following pages)

always put yourself in the reader's position, "Would
I be able to understand this if I wasn't intimately
familiar with the system?"

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 73

Speci9cation GuidelinesSpeci9cation Guidelines
Be on the lookout for persuasive connectors, ask why?
 keys: certainly, therefore, clearly, obviously, it follows that ...

Watch out for vague terms
 keys: some, sometimes, often, usually,ordinarily, most, mostly ...

When lists are given, but not completed, be sure all items are understood
 keys: etc., and so forth, and so on, such as

Be sure stated ranges don't contain unstated assumptions
 e.g., Valid codes range from 10 to 100. Integer? Real? Hex?

Beware of vague verbs such as handled, rejected, processed, ...

Beware "passive voice" statements
 e.g., The parameters are initialized. By what?

Beware "dangling" pronouns
 e.g., The I/O module communicated with the data validation module and
its contol "ag is set. Whose control 4ag?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 74

Speci9cation GuidelinesSpeci9cation Guidelines

When a term is explicitly de�ned in one place, try
substituting the de�nition forother occurrences of the term

When a structure is described in words, draw a picture

When a structure is described with a picture, try to redraw
the picture to emphasize di%erent elements of the structure

When symbolic equations are used, try expressing their
meaning in words

When a calculation is speci�ed, work at least two
examples

Look for statements that imply certainty, then ask for proof
 keys; always, every, all, none, never

Search behind certainty statements—be sure restrictions
or limitations are realistic

	Software Engineering: A Practitioner’s Approach, 6/e Chapter 8 Analysis Modeling copyright © 1996, 2001, 2005 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited.
	Requirements Analysis
	A Bridge
	Rules of Thumb
	Domain Analysis
	Slide 6
	Data Modeling
	What is a Data Object?
	Typical Objects
	Data Objects and Attributes
	What is a Relationship?
	ERD Notation
	Building an ERD
	The ERD: An Example
	Object-Oriented Concepts
	Classes
	Building a Class
	What is a Class?
	Encapsulation/Hiding
	Class Hierarchy
	Methods (a.k.a. Operations, Services)
	Scenario-Based Modeling
	Use-Cases
	Developing a Use-Case
	Use-Case Diagram
	Activity Diagram
	Swimlane Diagrams
	Flow-Oriented Modeling
	The Flow Model
	Flow Modeling Notation
	External Entity
	Process
	Data Flow
	Data Stores
	Data Flow Diagramming: Guidelines
	Constructing a DFD—I
	Level 0 DFD Example
	Constructing a DFD—II
	The Data Flow Hierarchy
	Flow Modeling Notes
	Process Specification (PSPEC)
	DFDs: A Look Ahead
	Control Flow Diagrams
	The Control Model
	Control Flow Diagram
	Control Specification (CSPEC)
	Guidelines for Building a CSPEC
	Class-Based Modeling
	Analysis Classes
	Selecting Classes—Criteria
	Class Diagram
	Slide 52
	CRC Modeling
	Slide 54
	Class Types
	Responsibilities
	Collaborations
	Composite Aggregate Class
	Reviewing the CRC Model
	Associations and Dependencies
	Multiplicity
	Dependencies
	Analysis Packages
	Slide 64
	Behavioral Modeling
	State Representations
	State Diagram for the ControlPanel Class
	The States of a System
	Slide 69
	Sequence Diagram
	Writing the Software Specification
	Specification Guidelines
	Slide 73
	Slide 74

