
Unit 2 : Software Requirements Engineering and Analysis
Modeling:

 Requirements Engineering, Establishing the Groundwork, Identifying

 Stakeholders, Recognizing Multiple Viewpoints, working toward

Collaboration, Asking the First Questions, Eliciting Requirements,

Collaborative Requirements Gathering, Usage Scenarios, Elicitation Work

Products, Developing Use Cases, Building the Requirements Model, Elements

of the Requirements Model, Negotiating Requirements, Validating

Requirements.

Suggested Free Open Source tools: StarUML, Modelio, SmartDraw.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 2

Software Engineering: A Practitioner’s Approach, Software Engineering: A Practitioner’s Approach,
6/e6/e

Chapter 7Chapter 7
Requirements EngineeringRequirements Engineering

copyright © 1996, 2001, 2005

R.S. Pressman & Associates, Inc.

For University Use Only

May be reproduced ONLY for student use at the university level

when used in conjunction with Software Engineering: A Practitioner's Approach.

Any other reproduction or use is expressly prohibited.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 3

Requirements Engineering-IRequirements Engineering-I

 InceptionInception—ask a set of questions that establish …—ask a set of questions that establish …
 basic understanding of the problembasic understanding of the problem
 the people who want a solutionthe people who want a solution
 the nature of the solution that is desired, and the nature of the solution that is desired, and
 the e ectiveness of preliminary communication and collaboration the e ectiveness of preliminary communication and collaboration

between the customer and the developerbetween the customer and the developer

 ElicitationElicitation—elicit requirements from all stakeholders—elicit requirements from all stakeholders
 ElaborationElaboration—create an analysis model that identi#es data, function —create an analysis model that identi#es data, function

and behavioral requirementsand behavioral requirements
 NegotiationNegotiation—agree on a deliverable system that is realistic for —agree on a deliverable system that is realistic for

developers and customersdevelopers and customers

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 4

Requirements Engineering-IIRequirements Engineering-II
 Speci#cationSpeci#cation—can be any one (or more) of the following:—can be any one (or more) of the following:

 A written documentA written document
 A set of modelsA set of models
 A formal mathematicalA formal mathematical
 A collection of user scenarios (use-cases)A collection of user scenarios (use-cases)
 A prototypeA prototype

 ValidationValidation—a review mechanism that looks for—a review mechanism that looks for
 errors in content or interpretationerrors in content or interpretation
 areas where clari#cation may be requiredareas where clari#cation may be required
 missing informationmissing information
 inconsistencies (a major problem when large products or systems inconsistencies (a major problem when large products or systems

are engineered)are engineered)
 con,icting or unrealistic (unachievable) requirements. con,icting or unrealistic (unachievable) requirements.

 Requirements managementRequirements management

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 5

InceptionInception

 Identify stakeholdersIdentify stakeholders
 ““who else do you think I should talk to?”who else do you think I should talk to?”

 Recognize multiple points of viewRecognize multiple points of view
 Work toward collaborationWork toward collaboration
 The #rst questionsThe #rst questions

 Who is behind the request for this work?Who is behind the request for this work?
 Who will use the solution?Who will use the solution?
 What will be the economic bene#t of a successful What will be the economic bene#t of a successful
solutionsolution

 Is there another source for the solution that you need?Is there another source for the solution that you need?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 6

Eliciting RequirementsEliciting Requirements
 meetings are conducted and attended by both software meetings are conducted and attended by both software

engineers and customersengineers and customers
 rules for preparation and participation are establishedrules for preparation and participation are established
 an agenda is suggested an agenda is suggested
 a "facilitator" (can be a customer, a developer, or an outsider) a "facilitator" (can be a customer, a developer, or an outsider)

controls the meetingcontrols the meeting
 a "de#nition mechanism" (can be work sheets, ,ip charts, or a "de#nition mechanism" (can be work sheets, ,ip charts, or

wall stickers or an electronic bulletin board, chat room or wall stickers or an electronic bulletin board, chat room or
virtual forum) is usedvirtual forum) is used

 the goal is the goal is
 to identify the problemto identify the problem
 propose elements of the solutionpropose elements of the solution
 negotiate di erent approaches, andnegotiate di erent approaches, and
 specify a preliminary set of solution requirementsspecify a preliminary set of solution requirements

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 7

Eliciting RequirementsEliciting Requirements

Use QFD to

prioritize

requirements

informally

prioritize

requirements

formal prioritization?

Create Use-cases

yes no

Elic it requirements

write scenario

define actors

complete template

draw use-case

diagram

Conduct FAST

meetings

Make lists of

functions, classes

Make lists of

constraints, etc.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 8

Quality Function DeploymentQuality Function Deployment

 Function deploymentFunction deployment determines the “value” (as determines the “value” (as
perceived by the customer) of each function required perceived by the customer) of each function required
of the systemof the system

 Information deploymentInformation deployment identi#es data objects and identi#es data objects and
eventsevents

 Task deploymentTask deployment examines the behavior of the system examines the behavior of the system
 Value analysisValue analysis determines the relative priority of determines the relative priority of
requirementsrequirements

Quality Function DeploymentQuality Function Deployment
 QFD : emphasizes an understanding of what is QFD : emphasizes an understanding of what is
valuable to customer & then deploys these values valuable to customer & then deploys these values
throughout the engineering process.throughout the engineering process.

3 types of requirements3 types of requirements

 Normal requirementsNormal requirements

 Expected requirementsExpected requirements

 Exciting requirementsExciting requirements
9

QFDQFD

 QFD techniques applicable to requirements elicitation.QFD techniques applicable to requirements elicitation.

 QFD uses customer interviews , surveys & examination of QFD uses customer interviews , surveys & examination of
historical data for requirement gathering activity.historical data for requirement gathering activity.

 Data is then translated into a table of requirements called Data is then translated into a table of requirements called
customer customer Voice tableVoice table..

 Voice table is reviewed by customer & stakeholders.Voice table is reviewed by customer & stakeholders.

10

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 11

Elicitation Work ProductsElicitation Work Products
 a statement of need and feasibility.a statement of need and feasibility.
 a bounded statement of scope for the system or product.a bounded statement of scope for the system or product.
 a list of customers, users, and other stakeholders who a list of customers, users, and other stakeholders who
participated in requirements elicitation participated in requirements elicitation

 a description of the system’s technical environment.a description of the system’s technical environment.
 a list of requirements (preferably organized by a list of requirements (preferably organized by
function) and the domain constraints that apply to each.function) and the domain constraints that apply to each.

 a set of usage scenarios that provide insight into the use a set of usage scenarios that provide insight into the use
of the system or product under di erent operating of the system or product under di erent operating
conditions.conditions.

 any prototypesany prototypes developed to better de#ne requirementsdeveloped to better de#ne requirements.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 12

Use-CasesUse-Cases
 A collection of user scenarios that describe the thread of usage of a systemA collection of user scenarios that describe the thread of usage of a system
 Each scenario is described from the point-of-view of an “actor”—a person or Each scenario is described from the point-of-view of an “actor”—a person or

device that interacts with the software in some waydevice that interacts with the software in some way
 Each scenario answers the following questions:Each scenario answers the following questions:

 Who is the primary actor, the secondary actor (s)?Who is the primary actor, the secondary actor (s)?
 What are the actor’s goals?What are the actor’s goals?
 What preconditions should exist before the story begins?What preconditions should exist before the story begins?
 What main tasks or functions are performed by the actor?What main tasks or functions are performed by the actor?
 What extensions might be considered as the story is described?What extensions might be considered as the story is described?
 What variations in the actor’s interaction are possible?What variations in the actor’s interaction are possible?
 What system information will the actor acquire, produce, or change?What system information will the actor acquire, produce, or change?
 Will the actor have to inform the system about changes in the external Will the actor have to inform the system about changes in the external

environment?environment?
 What information does the actor desire from the system?What information does the actor desire from the system?
 Does the actor wish to be informed about unexpected changes?Does the actor wish to be informed about unexpected changes?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 13

Use-Case DiagramUse-Case Diagram

homeowner

Arms/ disarms

system

Accesses system

via Internet

Reconfigures sensors

and related

system features

Responds to

alarm event

Encounters an

error condition

system

administrator

sensors

14

15

16

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 17

Building the Requirement ModelBuilding the Requirement Model

 Elements of the requirement modelElements of the requirement model
 Scenario-based elementsScenario-based elements

 Functional—processing narratives for software Functional—processing narratives for software
functionsfunctions

 Use-case—descriptions of the interaction between an Use-case—descriptions of the interaction between an
“actor” and the system“actor” and the system

 Class-based elementsClass-based elements
 Implied by scenariosImplied by scenarios

 Behavioral elementsBehavioral elements
 State diagramState diagram

 Flow-oriented elementsFlow-oriented elements
 Data ,ow diagramData ,ow diagram

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 18

Analysis ClassesAnalysis Classes
 External entitiesExternal entities (e.g., other systems, devices, people) that produce or consume (e.g., other systems, devices, people) that produce or consume

information to be used by a computer-based system.information to be used by a computer-based system.

 ThingsThings (e.g, reports, displays, letters, signals) that are part of the information (e.g, reports, displays, letters, signals) that are part of the information
domain for the problem.domain for the problem.

 Occurrences or eventsOccurrences or events (e.g., a property transfer or the completion of a series of (e.g., a property transfer or the completion of a series of
robot movements) that occur within the context of system operation.robot movements) that occur within the context of system operation.

 RolesRoles (e.g., manager, engineer, salesperson) played by people who interact with (e.g., manager, engineer, salesperson) played by people who interact with
the system.the system.

 Organizational unitsOrganizational units (e.g., division, group, team) that are relevant to an (e.g., division, group, team) that are relevant to an
application.application.

 PlacesPlaces (e.g., manufacturing ,oor or loading dock) that establish the context of the (e.g., manufacturing ,oor or loading dock) that establish the context of the
problem and the overall function of the system.problem and the overall function of the system.

 StructuresStructures (e.g., sensors, four-wheeled vehicles, or computers) that de#ne a class (e.g., sensors, four-wheeled vehicles, or computers) that de#ne a class
of objects or related classes of objects.of objects or related classes of objects.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 19

Selecting Classes—CriteriaSelecting Classes—Criteria

Needed servicesNeeded services

Multiple attributesMultiple attributes

Common attributesCommon attributes

Common operationsCommon operations

Essential requirementsEssential requirements

Retained informationRetained information

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 20

Class DiagramClass Diagram
System

program()

display()

reset()

query()

modify()

call()

systemID

verificationPhoneNumber

systemStatus

delayTime

telephoneNumber

masterPassword

temporaryPassword

numberTries

Class name

attributes

operations

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 21

Class DiagramClass Diagram
FloorPlan

determineType ()
positionFloorplan

scale()
change color()

type
name
outsideDimensions

Camera

determineType ()

translateLocation ()

displayID()

displayView()

displayZoom()

type

ID

location

fieldView

panAngle

ZoomSetting

WallSegment

type

startCoordinates

stopCoordinates

nextWallSement

determineType ()

draw()

Window

type

startCoordinates

stopCoordinates

nextWindow

determineType ()
draw()

is placed within

Wall

type

wallDimensions

determineType ()
computeDimensions ()

Door

type

startCoordinates

stopCoordinates

nextDoor

determineType ()
draw()

is part of

is used to buildis used to build

is used to build

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 22

CRC ModelingCRC Modeling
(Class_Responsibility-Collaborator)(Class_Responsibility-Collaborator)

 Analysis classes have “responsibilities”Analysis classes have “responsibilities”
 ResponsibilitiesResponsibilities are the attributes and operations encapsulated are the attributes and operations encapsulated
by the classby the class

 Analysis classes collaborate with one anotherAnalysis classes collaborate with one another
 CollaboratorsCollaborators are those classes that are required to provide a are those classes that are required to provide a
class with the information needed to complete a class with the information needed to complete a
responsibility. responsibility.

 In general, a collaboration implies either a request for In general, a collaboration implies either a request for
information or a request for some action.information or a request for some action.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 23

CRC CRC
ModelingModeling

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class:

Description:

Responsibility: Collaborator:

Class: FloorPlan

Description:

Responsibility: Collaborator:

incorporates walls, doors and windows

shows position of video cameras

defines floor plan name/type

manages floor plan positioning

scales floor plan for display

scales floor plan for display

Wall

Camera

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 24

Class TypesClass Types
 Entity classesEntity classes, also called, also called model model or or businessbusiness classes, are classes, are

extracted directly from the statement of the problem (e.g., extracted directly from the statement of the problem (e.g.,
FloorPlan and Sensor). FloorPlan and Sensor).

 Boundary classesBoundary classes are used to create the interface (e.g., are used to create the interface (e.g.,
interactive screen or printed reports) that the user sees and interactive screen or printed reports) that the user sees and
interacts with as the software is used. interacts with as the software is used.

 Controller classesController classes manage a “unit of work” [UML03] from start manage a “unit of work” [UML03] from start
to #nish. That is, controller classes can be designed to manage to #nish. That is, controller classes can be designed to manage
 the creation or update of entity objects; the creation or update of entity objects;
 the instantiation of boundary objects as they obtain information the instantiation of boundary objects as they obtain information

from entity objects; from entity objects;
 complex communication between sets of objects; complex communication between sets of objects;
 validation of data communicated between objects or between the validation of data communicated between objects or between the

user and the application. user and the application.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 25

ResponsibilitiesResponsibilities
(Attributes and methods relevant to the class)(Attributes and methods relevant to the class)

 System intelligence should be distributed across System intelligence should be distributed across
classes to best address the needs of the problemclasses to best address the needs of the problem

 Each responsibility should be stated as generally as Each responsibility should be stated as generally as
possiblepossible

 Information and the behavior related to it should Information and the behavior related to it should
reside within the same classreside within the same class

 Information about one thing should be localized with a Information about one thing should be localized with a
single class, not distributed across multiple classes.single class, not distributed across multiple classes.

 Responsibilities should be shared among related Responsibilities should be shared among related
classes, when appropriate. classes, when appropriate.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 26

CollaborationsCollaborations

 Classes ful#ll their responsibilities in one of two ways:Classes ful#ll their responsibilities in one of two ways:
 A class can use its own operations to manipulate its own A class can use its own operations to manipulate its own
attributes, thereby ful#lling a particular responsibility, or attributes, thereby ful#lling a particular responsibility, or

 a class can collaborate with other classes.a class can collaborate with other classes.

 Collaborations identify relationships between classesCollaborations identify relationships between classes
 Collaborations are identi#ed by determining whether a class Collaborations are identi#ed by determining whether a class
can ful#ll each responsibility itselfcan ful#ll each responsibility itself

 Three di erent generic relationships between classes Three di erent generic relationships between classes
[WIR90]: [WIR90]:
 the the is-part-ofis-part-of relationshiprelationship
 the the has-knowledge-ofhas-knowledge-of relationship relationship
 the the depends-upondepends-upon relationshiprelationship

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 27

Composite Aggregate ClassComposite Aggregate Class

Player

PlayerHead PlayerArms PlayerLegsPlayerBody

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 28

Reviewing the CRC ModelReviewing the CRC Model
 All participants in the review (of the CRC model) are given a subset of the All participants in the review (of the CRC model) are given a subset of the

CRC model index cards.CRC model index cards.
 Cards that collaborate should be separated (i.e., no reviewer should have two Cards that collaborate should be separated (i.e., no reviewer should have two

cards that collaborate).cards that collaborate).
 All use-case scenarios (and corresponding use-case diagrams) should be All use-case scenarios (and corresponding use-case diagrams) should be

organized into categoriesorganized into categories..
 The review leader reads the use-case deliberatelyThe review leader reads the use-case deliberately..

 As the review leader comes to a named object, she passes a token to the person As the review leader comes to a named object, she passes a token to the person
holding the corresponding class index card.holding the corresponding class index card.

 When the token is passed, the holder of the class card is asked to describe When the token is passed, the holder of the class card is asked to describe
the responsibilities noted on the cardthe responsibilities noted on the card..
 The group determines whether one (or more) of the responsibilities satis#es The group determines whether one (or more) of the responsibilities satis#es

the use-case requirement.the use-case requirement.
 If the responsibilities and collaborations noted on the index cards cannot If the responsibilities and collaborations noted on the index cards cannot

accommodate the use-case, modi#cations are made to the cardsaccommodate the use-case, modi#cations are made to the cards..
 This may include the de#nition of new classes (and corresponding CRC index This may include the de#nition of new classes (and corresponding CRC index

cards) or the speci#cation of new or revised responsibilities or collaborations on cards) or the speci#cation of new or revised responsibilities or collaborations on
existing cards.existing cards.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 29

Associations and DependenciesAssociations and Dependencies

 Two analysis classes are often related to one another in Two analysis classes are often related to one another in
some fashionsome fashion
 In UML these relationships are called In UML these relationships are called associationsassociations
 Associations can be re#ned by indicatingAssociations can be re#ned by indicating multiplicitymultiplicity (the (the
term term cardinalitycardinality is used in data modelingis used in data modeling

 In many instances, a client-server relationship exists In many instances, a client-server relationship exists
between two analysis classes. between two analysis classes.
 In such cases, a client-class depends on the server-class in In such cases, a client-class depends on the server-class in
some way and a some way and a dependency relationshipdependency relationship is established is established

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 30

MultiplicityMultiplicity

WallSegment Window Door

Wall

is used to buildis used to build

is used to build1..*

1 1 1

0..* 0..*

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 31

DependenciesDependencies

CameraDisplayWindow

{password}

<<access>>

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 32

Analysis PackagesAnalysis Packages

 Various elements of the analysis model (e.g., use-cases, Various elements of the analysis model (e.g., use-cases,
analysis classes) are categorized in a manner that analysis classes) are categorized in a manner that
packages them as a groupingpackages them as a grouping

 The plus sign preceding the analysis class name in The plus sign preceding the analysis class name in
each package indicates that the classes have public each package indicates that the classes have public
visibility and are therefore accessible from other visibility and are therefore accessible from other
packages.packages.

 Other symbols can precede an element within a Other symbols can precede an element within a
package. A minus sign indicates that an element is package. A minus sign indicates that an element is
hidden from all other packages and a # symbol hidden from all other packages and a # symbol
indicates that an element is accessible only to packages indicates that an element is accessible only to packages
contained within a given package.contained within a given package.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 33

Analysis PackagesAnalysis Packages

Environment

+Tree
+Landscape
+Road
+Wall
+Bridge
+Building
+VisualEffect
+Scene

Characters

+Player
+Protagonist
+Antagonist
+SupportingRole

RulesOfTheGame

+RulesOfMovement
+ConstraintsOnAction

package name

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 34

Behavioral ModelingBehavioral Modeling

 The behavioral model indicates how software will The behavioral model indicates how software will
respond to external events or stimuli. To create the respond to external events or stimuli. To create the
model, the analyst must perform the following model, the analyst must perform the following
steps:steps:

 Evaluate all use-cases to fully understand Evaluate all use-cases to fully understand
the sequence of interaction within the the sequence of interaction within the
system.system.

 Identify events that drive the interaction Identify events that drive the interaction
sequence and understand how these events sequence and understand how these events
relate to speci#c objects.relate to speci#c objects.

 Create a sequence for each use-case.Create a sequence for each use-case.
 Build a state diagram for the system.Build a state diagram for the system.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 35

State RepresentationsState Representations

 In the context of behavioral modeling, two di erent In the context of behavioral modeling, two di erent
characterizations of states must be considered: characterizations of states must be considered:
 the state of each class as the system performs its function andthe state of each class as the system performs its function and
 the state of the system as observed from the outside as the the state of the system as observed from the outside as the
system performs its functionsystem performs its function

 The state of a class takes on both passive and active The state of a class takes on both passive and active
characteristics [CHA93]. characteristics [CHA93].
 A A passive statepassive state is simply the current status of all of an object’s is simply the current status of all of an object’s
attributes.attributes.

 The The active stateactive state of an object indicates the current status of the of an object indicates the current status of the
object as it undergoes a continuing transformation or object as it undergoes a continuing transformation or
processing. processing.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 36

State Diagram for the ControlPanel ClassState Diagram for the ControlPanel Class

reading

locked

selecting

password

entered

comparing

password = incorrect

& numberOfTries < maxTries

password = correct

activation successful

key hit

do: validatePassword

numberOfTries > maxTries

timer < lockedTime

timer > lockedTime

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 37

The States of a SystemThe States of a System
 statestate—a set of observables that —a set of observables that
characterizes the behavior of a system characterizes the behavior of a system
at a given timeat a given time

 state transitionstate transition—the movement from —the movement from
one state to anotherone state to another

 eventevent—an occurrence that causes the —an occurrence that causes the
system to exhibit some predictable system to exhibit some predictable
form of behaviorform of behavior

 actionaction—process that occurs as a —process that occurs as a
consequence of making a transitionconsequence of making a transition

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 38

Behavioral ModelingBehavioral Modeling

 Make a list of the di erent states of a Make a list of the di erent states of a
system (How does the system behave?)system (How does the system behave?)

 Indicate how the system makes a Indicate how the system makes a
transition from one state to another (How transition from one state to another (How
does the system change state?)does the system change state?)
 indicate eventindicate event
 indicate actionindicate action

 Draw a Draw a state diagram or a sequence state diagram or a sequence
diagramdiagram

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 39

Sequence DiagramSequence Diagram
homeowner control panel sensorssystem sensors

system

ready

reading

request lookup
comparing

result

password entered

password = correct

request activation

activation successful

locked
numberOfTries > maxTries

selecting

timer > lockedTime
A

A

Figure 8.27 Sequence diagram (partial) for SafeHome security function

activation successful

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 40

Writing the Software Speci#cationWriting the Software Speci#cation

Everyone knew exactly
what had to be done
until someone wrote it
down!

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 41

Class DiagramClass Diagram

Sensor

name/id

type

location

area

characteristics

identify()

enable()

disable()

reconfigure()

From the From the SafeHomeSafeHome system … system …

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 42

State DiagramState Diagram

Figure 7.6 Preliminary UML state diagram for a photocopier

Initialization

system status=“not ready”

display msg = “please wait”

display status = blinking

entry/ switch machine on

do: run diagnostics

do: initiate all subsystems

turn copier
“on“

subsystems

ready
system status=“Ready”

display msg = “enter cmd”
display status = steady

entry/ subsystems ready

do: poll user input panel
do: read user input

do: interpret user input

Reading

commands

system status=“Copying”

display msg= “copy count =”
display message=#copies

display status= steady

entry/ start copies

do: manage copying

do: monitor paper tray

do: monitor paper flow

Making copies

start copies

system status=“Jammed”

display msg= “paper jam”

display message=location

display status= blinking

entry/ paper jammed

do: determine location
do: provide corrective msg.

do: interrupt making copies

problem diagnosis

paper jammed

system status=“load paper”

display msg= “load paper”

display status= blinking

entry/ paper empty

do: lower paper tray
do: monitor fill switch

do: raise paper tray

load paper

paper tray empty

not jammed

paper full

turn copier “off”

not jammed

copies complete

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 43

Analysis PatternsAnalysis Patterns

Pattern name:Pattern name: A descriptor that captures the essence of the pattern. A descriptor that captures the essence of the pattern.

Intent:Intent: Describes what the pattern accomplishes or represents Describes what the pattern accomplishes or represents

Motivation:Motivation: A scenario that illustrates how the pattern can be used to address the A scenario that illustrates how the pattern can be used to address the
problem.problem.

Forces and context:Forces and context: A description of external issues (forces) that can a0ect how the A description of external issues (forces) that can a0ect how the
pattern is used and also the external issues that will be resolved when the pattern is pattern is used and also the external issues that will be resolved when the pattern is
applied. applied.

Solution:Solution: A description of how the pattern is applied to solve the problem with an A description of how the pattern is applied to solve the problem with an
emphasis on structural and behavioral issues.emphasis on structural and behavioral issues.

ConsequencesConsequences: Addresses what happens when the pattern is applied and what : Addresses what happens when the pattern is applied and what
trade-o0s exist during its application.trade-o0s exist during its application.

DesignDesign: Discusses how the analysis pattern can be achieved through the use of : Discusses how the analysis pattern can be achieved through the use of
known design patterns.known design patterns.

Known usesKnown uses: Examples of uses within actual systems.: Examples of uses within actual systems.

Related patternsRelated patterns: On e or more analysis patterns that are related to the named : On e or more analysis patterns that are related to the named
pattern because (1) it is commonly used with the named pattern; (2) it is structurally pattern because (1) it is commonly used with the named pattern; (2) it is structurally
similar to the named pattern; (3) it is a variation of the named pattern.similar to the named pattern; (3) it is a variation of the named pattern.

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 44

Negotiating RequirementsNegotiating Requirements

 Identify the key stakeholdersIdentify the key stakeholders
 These are the people who will be involved in the negotiationThese are the people who will be involved in the negotiation

 Determine each of the stakeholders “win conditions”Determine each of the stakeholders “win conditions”
 Win conditions are not always obviousWin conditions are not always obvious

 NegotiateNegotiate
 Work toward a set of requirements that lead to “win-win”Work toward a set of requirements that lead to “win-win”

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 45

Validating Requirements-IValidating Requirements-I
 Is each requirement consistent with the overall objective for the Is each requirement consistent with the overall objective for the

system/product?system/product?
 Have all requirements been speci#ed at the proper level of Have all requirements been speci#ed at the proper level of

abstraction? That is, do some requirements provide a level of abstraction? That is, do some requirements provide a level of
technical detail that is inappropriate at this stage?technical detail that is inappropriate at this stage?

 Is the requirement really necessary or does it represent an add-on Is the requirement really necessary or does it represent an add-on
feature that may not be essential to the objective of the system?feature that may not be essential to the objective of the system?

 Is each requirement bounded and unambiguous?Is each requirement bounded and unambiguous?
 Does each requirement have attribution? That is, is a source Does each requirement have attribution? That is, is a source

(generally, a speci#c individual) noted for each requirement? (generally, a speci#c individual) noted for each requirement?
 Do any requirements con,ict with other requirements?Do any requirements con,ict with other requirements?

These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 6/e and
are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001, 2005 46

Validating Requirements-IIValidating Requirements-II

 Is each requirement achievable in the technical environment that will Is each requirement achievable in the technical environment that will
house the system or product?house the system or product?

 Is each requirement testable, once implemented?Is each requirement testable, once implemented?
 Does the requirements model properly re,ect the information, function Does the requirements model properly re,ect the information, function

and behavior of the system to be built.and behavior of the system to be built.
 Has the requirements model been “partitioned” in a way that exposes Has the requirements model been “partitioned” in a way that exposes

progressively more detailed information about the system.progressively more detailed information about the system.
 Have requirements patterns been used to simplify the requirements Have requirements patterns been used to simplify the requirements

model. Have all patterns been properly validated? Are all patterns model. Have all patterns been properly validated? Are all patterns
consistent with customer requirements?consistent with customer requirements?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

