UNIT II

Introduction

Contents

Unit II

Problem-solving

07 Hours

Solving Problems by Searching, Problem-Solving Agents, Example Problems, Search Algorithms, Uninformed Search Strategies, Informed (Heuristic) Search Strategies, Heuristic Functions, Search in Complex Environments, Local Search and Optimization Problems.

#Exemplar/Case Studies	4th Industrial Revolution Using AI, Big Data And Robotics
*Mapping of Course Outcomes for Unit II	CO2, CO4

Depth-Limited Search Algorithm

- ✓ A depth-limited search algorithm is similar to depth-first search with a predetermined limit.
- ✓ Depth-limited search can solve the drawback of the infinite path in the Depth-first search.
- ✓ In this algorithm, the node at the depth limit will treat as it has no successor nodes further.
- ✓ Depth-limited search can be terminated with two Conditions of failure:
- 1. Standard failure value: It indicates that problem does not have any solution.
- 2. Cutoff failure value: It defines no solution for the problem within a given depth limit.

Depth-Limited Search Algorithm

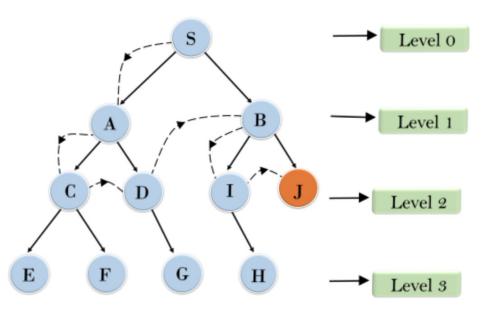
✓ Advantages:

Depth-limited search is Memory efficient.

✓ Disadvantages:

Depth-limited search also has a disadvantage of incompleteness.
It may not be optimal if the problem has more than one solution.

Depth-Limited Search Algorithm


Completeness: DLS search algorithm is complete if the solution is above the depth-limit.

Time Complexity: Time complexity of DLS algorithm is $O(b^{\ell})$.

Space Complexity: Space complexity of DLS algorithm is $O(b \times \ell)$.

Optimal: Depth-limited search can be viewed as a special case of DFS, and it is also not optimal even if $\ell > d$.

Depth Limited Search

Iterative deepeningdepth-first Search

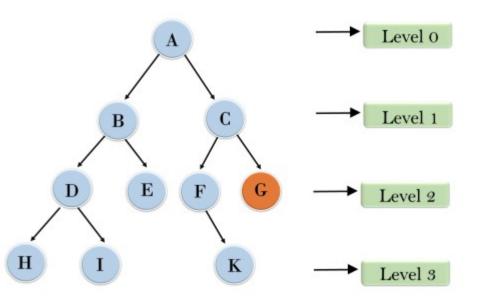
- The iterative deepening algorithm is a combination of DFS and BFS algorithms. This search algorithm finds out the best depth limit and does it by gradually increasing the limit until a goal is found.
- This algorithm performs depth-first search up to a certain "depth limit", and it keeps increasing the depth limit after each iteration until the goal node is found.
- This Search algorithm combines the benefits of Breadth-first search's fast search and depth-first search's memory efficiency.
- The iterative search algorithm is useful uninformed search when search space is large, and depth of goal node is unknown.

Iterative deepeningdepth-first Search

• Advantages:

It combines the benefits of BFS and DFS search algorithm in terms of fast search and memory efficiency.

• Disadvantages:


The main drawback of IDDFS is that it repeats all the work of the previous phase.

st Search

Iterative deepeningdepth-first Search

1'st Iteration----> A 2'nd Iteration----> A, B, C 3'rd Iteration---->A, B, D, E, C, F, G 4'th Iteration---->A, B, D, H, I, E, C, F, K, G In the fourth iteration, the algorithm will find the goal node.

Iterative deepening depth first search

Iterative deepeningdepth-first Search

• Completeness:

This algorithm is complete is if the branching factor is finite.

• Time Complexity:

Let's suppose b is the branching factor and depth is d then the worst-case time complexity is $O(b^d)$.

• Space Complexity:

The space complexity of IDDFS will be O(bd).

• Optimal:

IDDFS algorithm is optimal if path cost is a non- decreasing function of the depth of the node.

• Bidirectional search algorithm runs two simultaneous searches, one form initial state called as forward-search and other from goal node called as backward-search, to find the goal node.

- Bidirectional search replaces one single search graph with two small subgraphs in which one starts the search from an initial vertex and other starts from goal vertex.
- The search stops when these two graphs intersect each other.

Bidirectional Search Algorithm:

• Bidirectional search can use search techniques such as BFS, DFS, DLS, etc.

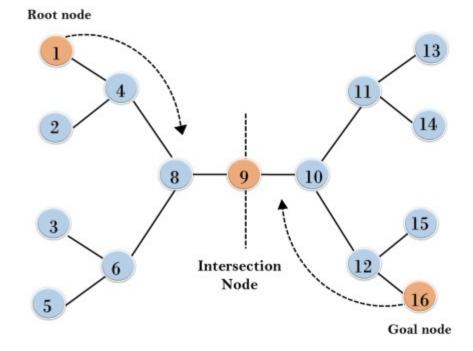
Bidirectional Search Algorithm:

• Advantages:

- 1. Bidirectional search is fast.
- 2. Bidirectional search requires less memory

• Disadvantages:

- 1. Implementation of the bidirectional search tree is difficult.
- 2. In bidirectional search, one should know the goal state in advance.


Bidirectional Search

Example:

In the below search tree, bidirectional search algorithm is applied. This algorithm divides one graph/tree into two sub-graphs. It starts traversing from node 1 in the forward direction and starts from goal node 16 in the backward direction.

Bidirectional Search Algorithm:

The algorithm terminates at node 9 where two searches meet.

Bidirectional Search Algorithm:

- Completeness: Bidirectional Search is complete if we use BFS in both searches.
- **Time Complexity:** Time complexity of bidirectional search using BFS is O(b^d).
- **Space Complexity:** Space complexity of bidirectional search is O(b^d).
- **Optimal:** Bidirectional search is Optimal.