SPPU-TE-COMP-CONTENT - KSKA Git

Total		of Questions : 8] SEAT No.: [Total No. of Pages : 3]				
[6180]-55						
T.E. (Computer Engineering)						
ARTIFICIAL INTELLIGENCE						
(2019 Pattern) (Semester - II) (310253)						
Time	: 21/2	Hours] [Max. Marks: 70				
Instr	uction	s to the candidates:				
	1)	Answer four questions Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6. Q.7 or Q.8.				
	2)	Neat diagrams must be drawn wherever necessary.				
	<i>3</i>)	Assume suitable data if necessary.				
Q1)		List All problem solving strategies. What is backtracking, explain with n queen problem. [8]				
	b)	Write Minimax Search Algorithm for two players. How use of alpha and				
	0)	beta cut-offs will improve performance? [9]				
Q2)	a)	Define Game theory, Differentiate between stochastic and partial games with examples. [9]				
	b)	Define is Constraint satisfaction problem, State the types of consistencies				
		Solve the following Crypt Arithmetic Problem. [8]				
		B A S E				
		+ B A L L				
		Define is Constraint satisfaction problem, State the types of consistencies Solve the following Crypt Arithmetic Problem. B A S E + B A L L G A M E S				
Q 3)	a)	What is an Agent. Name any 5 agents around you Explain Knowledge				
		based agent with Wumpus World. List and explain in short the various				
		steps of knowledge engineering process [9] Consider the following axioms: If a triangle is equilateral then it is isosceles.				
	b)	If a triangle is isosceles, then its two sides AB and AC are equal. If AB				

OR

triangle. Represent these facts in predicate logic.

and AC are equal, then angle B and C are equal.ABC is an equilateral

P.T.O.

[9]

SPPU-TE-COMP-CONTENT - KSKA Git

Q4)	a)	Writ	te the following sentences in FOLGusing types of quantifiers)	[9]
		i)	All birds fly	
		ii)	Some boys play cricket	
		iii)	A first cousin is a child of a parent's sibling	
		iv)	You can fool all the people some of the time and some of the people all the time, but you cannot fool all the people all the time.	ne
	b)		at is Knowledge Representation using propositional Logic? Compositional and predicate Logic.	pare [9]
Q 5)	a)	_	lain Forward Chaining and Backward Chaining. With its Proper antages and Disadvantages.	ties, [9]
	b) (Expl	Unification in FOL	[8]
Q6)	a)	11) Expl	Reasoning with Default information OR lain FOL inference for following Quantifiers	[8]
~ /		•	Universal Generalization	90
		•	Universal Instantiation	
		•	Existential Instantiation	b a
		•	Existential introduction	
	b)	Wha Mod	at is Ontological Engineering, in details with its categories object del.	and [9]
Q7)	a)	Expl	lain with an example Goal Stack Planning (STRIPS algorithm).	[5]
	b)	Expl	lain with example, how planning is diffeent from problem solving	g.[5]
	c)	Expl	lain AI components and AI architecture.	[8]
			OR	
[61	80]-	55	2	

SPPU-TE-COMP-CONTENT - KSKA Git

Explain Planning in non deterministic domain. **Q8**) a) **[5]**

Importance of planning.

Algorithm ' Explain b) [5]

- i)
- Algorithm for classical planning. ii)

What is AI Explain. See opportunities with AI. What is AI Explain. Scope of AI in all walks of Life also explain Future c) [8]