SPPU-TE-COMP-CONTENT - KSKA Git

Total No. of Questions : 8] SEAT No. :	
P277 [Total No. of I	Pages: 2
[6003] 356	8
T.E. (Computer Engineering)	
ARTIFICALINTELLIGENCE	
(2019 Pattern) (Semester - II) (310253)	
0, 0.	. 1 70
Time: 2½ Hours] [Max. M. Instructions to the candidates:	arks: 70
1) Attempt Q.1 or Q.2, Q.3, or Q.4, Q.5 or Q.6 Q.7, or Q.8.	
2) Neat diagrams must be drawn whenver necessary.	
3) Assume suitable data if necessary.	
Q1) a) List All problem solving strategies. What is backtracking, explain	n with n
queen problem, with Branch and bound or Backtracking.	[8]
b) Explain Monte Carlo Tree Search with all steps and Demonstra	
one Example.	[9]
OR O	
Q2) a) i) Explain limitations of game search algorithm, Differentiate b	etween
stochastic and partial games AND.	
ii) Explain How use of arpha and beta cut-offs will in	
performance of mini max algorithm?	[9]
b) Define is Constraint satisfaction problem, State the types of consist	
Solve the following Crypt Arithmetic Problem.	[8]
SEND	
+MORE	
MONEY	650
O2) a) What is an Assat Warra and 5 assat around an Edicia V	×
Q3) a) What is an Agent. Name any 5 agents around you Explain Kno based agent with Wumpus World.	_
List and explain in short the various steps of knowledge engi	[9]
process.	neering
b) Consider the following axioms:	[9]
If a triangle is isosceles, then its two sides AB and AC are equal,	
If AB and AC are equal, then angle B and C are equal	
ABC is an equilateral triangle,	
Represent these facts in predicate'logic.	
Explain Inference in Propositional Logic.	
OR	

P.T.O.

SPPU-TE-COMP-CONTENT – KSKA Git

<i>Q4</i>)	a)	Write the following sentences in FOL (any 2) (using types of quantifiers).		
		[9]		
		i) Every number is either negative or has a square root.		
		ii) Every connected and circuit-free graph is a tree.		
		iii) Some people are either religious or pious		
		iv) There is a barber who shaves all men in the town who do not shave		
		themselves		
	b)	What is Resolution? Solve the following statement by using resolution		
		algorithm. Draw suitable resolution graph. [9]		
		i) Rajesh like all kind of food.		
		ii) Apple and vegetables are food.		
		iii) Anything anyone eats and is not killed is food.		
		iv) Ajay eats peanuts and still alive.		
	Prov	ve that Rajesh like bananas		
<i>Q5</i>)	a)	Explain Forward Chaining and Backward Chaining. With its Properties,		
	• .	withone. example. [9]		
	b)	Explain Unification Algorithm in FOL. Solve stepwise with proper		
	1	comments if $p(x,g(x))$ is equal to or not equal to f (prime, f(prime)) [8]		
00	`			
<i>Q6</i>)	a)	Explain FOL inference for following Quantifiers. [8]		
		i) Universal Generalization.		
		ii) Universal Instantiation.iii) Existential Instantiation.		
			٦	
	b)	iv) Existential introduction What is Ontological Engineering in details with its categories object and		
	b)	What is Ontological Engineering, in details with its categories object and Model.		
		Model.		
Q7)	a)	Explain with an example State Space Planning. [5]		
21)	b)	Explain with example, how planning is different from problem solving. [5]		
	c)	Explain AI components and AI architecture. [8]		
	C)	OR OR		
Q8)	a)	Explain Planning in non deterministic domain. [5]		
ره و	b)	Explain. [8]		
	0)	i) Importance of planning		
		ii) Algorithm for classical planning		
	c)	Explain Limits of AI and Future opportunities with AI. [5]		
	- /			
		. 6.		
		* * *		
		&.		