
UNIT II

Introduction

Contents

Problem Solving

Search: Searchingis a step by step procedure to solve a search-problem in a given search space. A
search problem can have three main factors:
 Search Space: Search space represents a set of possible solutions, which a system may have.
 Start State: It is a state from where agent begins the search.
 Goal test: It is a function which observe the current state and returns whether the goal state is
 achieved or not.
Search tree: A tree representation of search problem is called Search tree. The root of the search tree
is the root node which is corresponding to the initial state.
Actions: It gives the description of all the available actions to the agent.
Transition model: A description of what each action do, can be represented as a transition model.
Path Cost: It is a function which assigns a numeric cost to each path.
Solution: It is an action sequence which leads from the start node to the goal node.
Optimal Solution: If a solution has the lowest cost among all solutions.

Properties of Search Algorithms:

Completeness: A search algorithm is said to be complete if it guarantees to return a
solution if at least any solution exists for any random input.

Optimality: If a solution found for an algorithm is guaranteed to be the best solution
(lowest path cost) among all other solutions, then such a solution for is said to be an
optimal solution.

Time Complexity: Time complexity is a measure of time for an algorithm to complete
its task.

Space Complexity: It is the maximum storage space required at any point during the
search, as the complexity of the problem.

Types of search algorithms

Types of search algorithms

Uninformed/Blind Search:
The uninformed search does not contain any domain knowledge such as closeness, the
location of the goal. It operates in a brute-force way as it only includes information about how
to traverse the tree and how to identify leaf and goal nodes. Uninformed search applies a way
in which search tree is searched without any information about the search space like initial
state operators and test for the goal, so it is also called blind search.It examines each node of
the tree until it achieves the goal node.
1) Breadth-first search
2) Uniform cost search
3) Depth-first search
4) Iterative deepening depth-first search
5) Bidirectional Search

Types of search algorithms

Informed Search

Informed search algorithms use domain knowledge. In an informed
search, problem information is available which can guide the search.
Informed search strategies can find a solution more efficiently than an
uninformed search strategy. Informed search is also called a Heuristic
search.
A heuristic is a way which might not always be guaranteed for best
solutions but guaranteed to find a good solution in reasonable time.
Informed search can solve much complex problem which could not be
solved in another way.
1) Greedy Search
2) A* Search

Breadth-first Search:

l Breadth-first search is the most common search strategy for traversing a tree or graph.
l This algorithm searches breadthwise in a tree or graph, so it is called breadth-first

search.
l BFS algorithm starts searching from the root node of the tree and expands all successor

node at the current level before moving to nodes of next level.
l The breadth-first search algorithm is an example of a general-graph search algorithm.
l Breadth-first search implemented using FIFO queue data structure.

Breadth-first Search:

l Advantages:

1. BFS will provide a solution if any solution exists.
2. If there are more than one solutions for a given problem, then BFS will provide the

minimal solution which requires the least number of steps.

l. Disadvantages:

1. It requires lots of memory since each level of the tree must be saved into memory to
expand the next level.

2. BFS needs lots of time if the solution is far away from the root node.

Breadth-first Search:

l Example: the traversing of
the tree using BFS
algorithm from the root
node S to goal node K. BFS
search algorithm traverse in
layers, so it will follow the
path which is shown by the
dotted arrow, and the
traversed path will be:

l S--->A--->B---->C---
>D---->G--->H--->E----
>F---->I---->K

Breadth-first Search:

l Time Complexity: Time Complexity of BFS algorithm can be obtained by the number
of nodes traversed in BFS until the shallowest Node.

l Where the d= depth of shallowest solution and b is a node at every state.
T (b) = 1+b2+b3+.......+ bd= O (bd)

l Space Complexity: Space complexity of BFS algorithm is given by the Memory size of
frontier which is O(bd).

l Completeness: BFS is complete, which means if the shallowest goal node is at some
finite depth, then BFS will find a solution.

l Optimality: BFS is optimal if path cost is a non-decreasing function of the depth of the
node.

Depth-first Search

l Depth-first search isa recursive algorithm for traversing a tree or graph data structure.
l It is called the depth-first search because it starts from the root node and follows each

path to its greatest depth node before moving to the next path.
l DFS uses a stack data structure for its implementation.
l The process of the DFS algorithm is similar to the BFS algorithm.

l

Depth-first Search

l Advantage:
1. DFS requires very less memory as it only needs to store a stack of the nodes on the

path from root node to the current node.
2. It takes less time to reach to the goal node than BFS algorithm (if it traverses in the

right path).

l. Disadvantage:
1. There is the possibility that many states keep re-occurring, and there is no guarantee of

finding the solution.
2. DFS algorithm goes for deep down searching and sometime it may go to the infinite

loop.

Depth-first Search

l Example:
l In the below search tree, we have shown the flow of depth-first search, and it will

follow the order as:
l Root node--->Left node ----> right node.

l It will start searching from root node S, and traverse A, then B, then D and E, after
traversing E, it will backtrack the tree as E has no other successor and still goal node is
not found. After backtracking it will traverse node C and then G, and here it will
terminate as it found goal node.

Depth-first Search

l Completeness: DFS search
algorithm is complete within finite
state space as it will expand every
node within a limited search tree.

Depth-first Search

l Time Complexity: Time complexity of DFS will be equivalent to the node traversed
by the algorithm. It is given by:

l T(n)= 1+ n2+ n3 +.........+ nm=O(nm)

l Where, m= maximum depth of any node and this can be much larger than d
(Shallowest solution depth)

l Optimal: DFS search algorithm is non-optimal, as it may generate a large number of
steps or high cost to reach to the goal node.

Uniform-cost Search Algorithm:

● Uniform-cost search is a searching algorithm used for traversing a weighted tree or
graph.

● This algorithm comes into play when a different cost is available for each edge.
● The primary goal of the uniform-cost search is to find a path to the goal node which

has the lowest cumulative cost.
● Uniform-cost search expands nodes according to their path costs form the root node.
● It can be used to solve any graph/tree where the optimal cost is in demand.
● A uniform-cost search algorithm is implemented by the priority queue.
● It gives maximum priority to the lowest cumulative cost.
● Uniform cost search is equivalent to BFS algorithm if the path cost of all edges is the

same.

Uniform-cost Search:

● Advantages:
Uniform cost search is optimal
because at every state the path
with the least cost is chosen.

● Disadvantages:
It does not care about the number
of steps involve in searching and
only concerned about path cost.
Due to which this algorithm may
be stuck in an infinite loop.

Uniform-cost Search:

● Completeness:
Uniform-cost search is complete, such as if there is a solution, UCS will find it.

● Time Complexity:
Let C* is Cost of the optimal solution, and ε is each step to get closer to the goal node.

Then the number of steps is = C*/ε+1.

Here we have taken +1, as we start from state 0 and end to C*/ε.
 The worst-case time complexity of Uniform-cost search isO(b1 + [C*/ε])

● Optimal: Uniform-cost search is always optimal as it only selects a path with the
lowest path cost.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

