
UNIT II

Problem
Solving



Contents



Local Search Algorithm

 A local search algorithm in artificial intelligence is a type of optimization algorithm 
used to find the best solution to a problem by repeatedly making minor adjustments to 
an initial solution.

 Every time the algorithm iterates, the current solution is assessed, and a small 
modification to the current solution creates a new solution.

 The current solution is then compared to the new one, and if the new one is superior, it 
replaces the old one.

 This process keeps going until a satisfactory answer is discovered or a predetermined 
stopping criterion is satisfied.

 Hill climbing, simulated annealing, tabu search, and genetic algorithms are a few 
examples of different kinds of local search algorithms. 

 



Local Search Algorithm

 Applications for local search algorithms include scheduling, routing, and resource 
allocation. They are particularly helpful for issues where the search space is very large 
and can be used to solve both discrete and continuous optimization problems.

 In contrast to multiple paths, a local search algorithm completes its task by traversing a 
single current node and generally following that node's neighbors.

 One of the key benefits of local search algorithms is that they can be very efficient, 
particularly when compared to other optimization techniques such as exhaustive search 
or dynamic programming.

 This is because local search algorithms only need to explore a relatively small portion 
of the entire search space, which can save a significant amount of time and 
computational resources.

 



Local Search Algorithm

 one of the main limitations of local search algorithms is that they can become trapped 
in local optima, which are solutions that are better than all of their neighbors but are 
not the best possible solution overall. 

 To overcome this limitation, many local search algorithms use various techniques such 
as randomization, memory, or multiple starting points to help them escape from local 
optima and find better solutions.

 



l Working on a Local Search Algorithm

 Local search algorithms are a type of optimization algorithm that iteratively improves 
the solution to a problem by making small, local changes to it. Here are the general 
steps of a local search algorithm:

 Initialization:
 The algorithm starts with an initial solution to the problem. This solution can be 

generated randomly or using a heuristic.
 Evaluation:
 The quality of the initial solution is evaluated using an objective function. The 

objective function measures how good the solution is, based on the problem 
constraints and requirements.

 Neighborhood search:
 The algorithm generates neighboring solutions by making small modifications to the 

current solution. These modifications can be random or guided by heuristics.

 



Working on a Local Search Algorithm

 Selection:
 The neighboring solutions are evaluated using the objective function, and the best 

solution is selected as the new current solution.
 Termination:
 The algorithm terminates when a stopping criterion is met. This criterion can be a 

maximum number of iterations, a threshold value for the objective function, or a time 
limit.

 Solution:
 The final solution is the best solution found during the search process.

 



Local Search Algorithm: Hill Climbing

 Hill climbing algorithm is a local search algorithm which continuously moves in the direction 
of increasing elevation/value to find the peak of the mountain or best solution to the 
problem. It terminates when it reaches a peak value where no neighbor has a higher value.

 Hill climbing algorithm is a technique which is used for optimizing the mathematical 
problems. One of the widely discussed examples of Hill climbing algorithm is Traveling-
salesman Problem in which we need to minimize the distance traveled by the salesman.

 It is also called greedy local search as it only looks to its good immediate neighbor state 
and not beyond that.

 A node of hill climbing algorithm has two components which are state and value. Hill 
Climbing is mostly used when a good heuristic is available.

 In this algorithm, we don't need to maintain and handle the search tree or graph as it only 
keeps a single current state.



Local Search Algorithm: Hill Climbing

Features of Hill Climbing
Following are some main features of Hill Climbing Algorithm:
1. Generate and Test variant: Hill Climbing is the variant of Generate and Test method. 

The Generate and Test method produce feedback which helps to decide which 
direction to move in the search space.

2. Greedy approach: Hill-climbing algorithm search moves in the direction which 
optimizes the cost.

3. No backtracking: It does not backtrack the search space, as it does not remember the 
previous states.



State-space Diagram for Hill Climbing

Location (x-axis): State
Elevation (y-axis): Heuistic cost function or objective 
function
Global Minimum: If elevation corresponds to cost, then the 
aim is to find the lowest valley
Global Maximum: If elevation corresponds to an objective 
function, then the aim is to find the highest peak
Local Maximum: a peak that is higher than or equal to 
each of its neighboring states but lower than the global 
maximum
Plateau: a flat area of the state-space landscape (either a 
flat local maximum, from which no uphill exit exists, or 
shoulder, from which progress is possible)



Hill Climbing

Advantages
 Hill climbing is very useful in routing-related problems like travelling salesmen problem, 

job scheduling, chip designing, and portfolio management.
 It is good in solving optimization problems while using only limited computation power.
 It is sometimes more efficient than other search algorithms.
 Even though it may not give the optimal solution, it gives decent solutions to 

computationally challenging problems.

Disadvantages
 Both the basic hill climbing and the steepest-ascent hill climbing may fail to produce a 

solution. Either the algorithm terminates without finding a goal state or getting into a state 
from which no better state can be generated. This will happen if the programme has 
reached either a local maximum, a ridge or a plateau



Hill Climbing

Limitations:
Hill climbing algorithms have limitations that can affect their performance in certain situations. 
Here are some of the main limitations of hill climbing algorithms:
 Local Optima: Hill climbing algorithms can get stuck in local optima and need help finding the 

global optimum. This occurs when the algorithm converges to a solution that is locally optimal 
but not globally optimal.

 Plateaus: Plateaus occur when the objective function is flat or nearly flat in certain regions of 
the search space. In such cases, hill climbing algorithms may take a long to reach the global 
optimum or get stuck at a local optimum.

 Ridges: A ridge is a special form of the local maximum, which has a higher area than its 
surrounding but itself has a slope that cannot be reached in a single move.



Hill Climbing

Example: Given the 8-puzzle shown in Figure, use the hill-climbing algorithm with the 
Manhattan distance heuristic to find a path to the goal state.

Solution
By definition, the Manhattan distance heuristic is the sum of the Manhattan distances of 
tiles from their goal positions. In Figure, only the tiles 5, 6 and 8 are misplaced and their 
distances from the goal positions are respectively 2, 2 and 1.
Therefore, h(Initial state) = 2 + 2 + 1 = 5



Hill Climbing

Example: 



Local Search Algorithm: Local Beam Search

 Local beam search represents a parallelized adaptation of hill climbing, designed 
specifically to counteract the challenge of becoming ensnared in local optima. Instead of 
starting with a single initial solution, local beam search begins with multiple solutions, 
maintaining a fixed number (the "beam width") simultaneously. The algorithm explores the 
neighbors of all these solutions and selects the best solutions among them.

 Initialization: Start with multiple initial solutions.
 Evaluation: Evaluate the quality of each initial solution.
 Neighbor Generation: Generate neighboring solutions for all the current solutions.
 Selection: Choose the top solutions based on the improvement in the objective function.
 Termination: Continue iterating until a termination condition is met.
 Local beam search effectively avoids local optima because it maintains diversity in the 

solutions it explores. However, it requires more memory to store multiple solutions in 
memory simultaneously.



Local Search Algorithm: Simulated Annealing

 Simulated annealing is a probabilistic local search algorithm inspired by the annealing 
process in metallurgy. It allows the algorithm to accept worse solutions with a certain 
probability, which decreases over time. This randomness introduces exploration into 
the search process, helping the algorithm escape local optima and potentially find 
global optima.

 Initialization: Start with an initial solution.
 Evaluation: Evaluate the quality of the initial solution.
 Neighbor Generation: Generate neighboring solutions.
 Selection: Choose a neighboring solution based on the improvement in the objective 

function and the probability of acceptance.
 Termination: Continue iterating until a termination condition is met.



Local Search Algorithm: Simulated Annealing

 The key to simulated annealing's success is the "temperature" parameter, which 
controls the likelihood of accepting worse solutions. Initially, the temperature is high, 
allowing for more exploration. As the algorithm progresses, the temperature 
decreases, reducing the acceptance probability and allowing the search to converge 
towards a better solution.



Search in Complex Enviroment




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

