• Configuring RIP in Packet Tracer:

1. Build the network topology.

2. Configure IP addresses on the PCs and the routers.

Router 1:

R1(config)#

R1(config)#int fa0/0

R1(config-if)#ip address 10.0.0.1 255.0.0.0

R1(config-if)#no shut

R1(config-if)#

R1(config-if)#int serial 0/0/0

R1(config-if)#ip add 20.0.0.1 255.0.0.0

R1(config-if)#no shut

Router 2: R2(config)# R2(config)#int fa0/0 R2(config-if)#ip add 30.0.0.1 255.0.0.0 R2(config-if)#no shut R2(config-if)# R2(config-if)#int serial 0/0/0 R2(config-if)#ip add 20.0.0.2 255.0.0.0 R2(config-if)#no shut

IP configuration on PCs

Click PC->Desktop->IP Configuration. On each PC assign these addresses: PC1: IP address: 10.0.0.2 Subnet mask 255.0.0.0 Default Gateway 10.0.0.1 PC2: IP address: 30.0.0.2 Subnet mask 255.0.0.0 Default Gateway 30.0.0.1

3. Configure RIPv2 on the routers

Router 1

R1(config)#

R1(config)#router rip

R1(config-router)#version 2

R1(config-router)#network 10.0.0.0

R1(config-router)#network 20.0.0.0

Router 2

R2(config)#

R2(config)#router rip

R2(config-router)#version 2

R2(config-router)#network 20.0.0.0

R2(config-router)#network 30.0.0.0

As you can see, to configure rip on each router, we enable enable RIP using *router rip* command then advertise the networks directly connected to the router interfaces using *network* command.

4. We'll now verify RIP configuration.

To verify that RIP is in deed advertising routes, we can use the *show ip route* command on R1.

```
R1#
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile,
B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter
area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external
type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E -
EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia -
IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
С
     10.0.0.0/8 is directly connected, FastEthernet0/0
С
     20.0.0.0/8 is directly connected, Serial0/0/0
R
    30.0.0.0/8 [120/1] via 20.0.0.2, 00:00:17, Serial0/0/0
```

You can see that R1 has learned about the 30.0.0/8 network. The letter R indicates that the route was learned using RIP.

To specifically display routes learnt through RIP use *show ip route rip* command on the router.

Now lets Ping PC2 from PC1 to further confirm that connectivity is really established between the two subnets.

Ping test succeeded.

• BGP configuration:

Step 1:Draw BGP Topology Diagram.

Step 2: Assign ip address on each device as mentioned in Diagram.

-		1 [-		
et PC0	- 0		PC2	- 0	
Physical Config Desk	top Custom Interface		Physical Config Desi	ctop Custom Interface	
IP Configuratio	n X	LP Configuration			
IP Configuration			IP Configuration		
O DHCP			O DHCP	Static	
IP Address	10.0.0.2		IP Address	40.0.0.2	
Subnet Mask	255.0.0.0		Subnet Mask	255.0.0.0	
Default Gateway	10.0.0.1		Default Gateway	40.0.0.1	
DNS Server			DNS Server		
IPv6 Configuration			IPv6 Configuration		
O DHCP O Auto Con	fig 🖲 Static		O DHCP O Auto Cor	nfig 🖲 Static	
IPv6 Address	/		IPv6 Address		
Link Local Address	FE80::201:C7FF:FE54:466		Link Local Address	FE80::20A:F3FF:FE25:3462	
IPv6 Gateway			IPv6 Gateway		
IPv6 DNS Server			IPv6 DNS Server		

Step 3: bgp configuration on Router R1:

- R1(config)#router bgp 1
- R1(config-router)#neighbor 172.16.0.2 remote-as 71
- R1(config-router)#network 10.0.0.0 mask 255.0.0.0
- R1(config-router)#exit
- R1(config)#do write
- Building configuration...[OK]
- R1(config)#

Step 4: bgp configuration on Router R2:

R2(config)#router bgp 71 R2(config-router)#neighbor 172.16.0.1 remote-as 1 R2(config-router)#neighbor 172.14.0.2 remote-as 79 R2(config-router)#network 40.0.0.0 mask 255.0.0.0 R2(config-router)#exit R2(config)#do write Building configuration...[OK] R2(config)#

Step 5: bgp configuration on Router R3:

R3(config)#router bgp 79

R3(config-router)#neighbor 172.14.0.1 remote-as 71

R3(config-router)#network 40.0.0.0 mask 255.0.0.0

R3(config-router)#exit

R3(config)#do write

Building configuration...[OK

R3(config)#

- OSPF configuration.
- **1. Build the network topology.**

2.Configure IP addresses on PCs and router interfaces.

Router 1

R1(config)#int fa 0/0 R1(config-if)#ip add 10.0.0.1 255.0.0.0 R1(config-if)#no shut R1(config-if)# R1(config-if)#int serial 0/0/0 R1(config-if)#ip add 20.0.0.1 255.0.0.0 R1(config-if)#no shut **Router 2** R2(config-if)#int fa0/0 R2(config-if)#ip add 30.0.0.1 255.0.0.0 R2(config-if)#no shut R2(config-if)# R2(config-if)#int serial0/0/0 R2(config-if)#ip address 20.0.0.2 255.0.0.0 R2(config-if)#no shut Now do IP configurations for the PCs.

PC1 IP add 10.0.0.2 Subnet mask 255.0.0.0 Default gateway 10.0.0.1

PC2 IP add 30.0.0.2 Subnet mask 255.0.0.0 Default gateway 30.0.0.1

3. Configure OSPF on the routers.

The configuration is pretty simple and requires only two major steps:

1. Enable OSPF on a router using the *router ospf PROCESS_ID* in the global configuration mode.

2.Define on which interfaces OSPF will run and what networks will be advertised using *network IP_ADDRESS_WILCARD_MASK_AREA* command in the OSPF configuration mode.

Router 1

R1(config)#

```
R1(config)#router ospf 1
```

R1(config-router)#network 10.0.0.0 0.255.255.255 area 0

R1(config-router)#network 20.0.0.0 0.255.255.255 area 0

Router 2

R2(config)#

R2(config)#router ospf 2

R2(config-router)#network 20.0.00 0.255.255.255 area 0

R2(config-router)#network 30.0.00 0.255.255.255 area 0

4. Verify OSPF configuration

First, let's verify that the routers have established a neighbor relationship by typing the *show ip ospf neighbor* command on **R1**:

```
R1#
R1#show ip ospf neighbor
Neighbor ID Pri State Dead Time Address
Interface
30.0.0.1 0 FULL/ - 00:00:30 20.0.0.2
Serial0/0/0
```

Next, to verify that R1 has learnt the route to 30.0.0.0/8 network, we'll use *show ip route ospf* command on **R1**:

```
R1#
R1#show ip route ospf
O 30.0.0.0 [110/65] via 20.0.0.2, 00:20:50, Serial0/0/0
```

Note that the letter **O** indicates OSPF routes.

Lastly, verify connectivity. Ping PC2 from PC1. Ping should be successful.

	PC 1	- 0
Physical Config Desktop	stributes Software/Services	
Command Prompt		x
C:\>ping 30.0.0.2	Line 1,0	
Pinging 80.0.0.2 with 82	bytes of data:	
Request timed out.		
Reply from 30.0.0.2: byte Reply from 30.0.0.2: byte	a=37 time=ims TTL=128 s=32 time=ims TTL=126	
Reply from 30.0.0.2: byte	s=32 time=3ms TTL=126	
Ping statistics for 30.0 Packets: Sent = 4, Se	0.2: ceived = 3. Lost = 1 (25% loss).	
Approximate round trip to	mes in milli-seconds:	
-: V1		
15m		