{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "920f58f3", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score" ] }, { "cell_type": "code", "execution_count": 2, "id": "2b4a4744", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | User ID | \n", "Gender | \n", "Age | \n", "EstimatedSalary | \n", "Purchased | \n", "
---|---|---|---|---|---|
0 | \n", "15624510 | \n", "0 | \n", "19 | \n", "19000 | \n", "0 | \n", "
1 | \n", "15810944 | \n", "0 | \n", "35 | \n", "20000 | \n", "0 | \n", "
2 | \n", "15668575 | \n", "1 | \n", "26 | \n", "43000 | \n", "0 | \n", "
3 | \n", "15603246 | \n", "1 | \n", "27 | \n", "57000 | \n", "0 | \n", "
4 | \n", "15804002 | \n", "0 | \n", "19 | \n", "76000 | \n", "0 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
395 | \n", "15691863 | \n", "1 | \n", "46 | \n", "41000 | \n", "1 | \n", "
396 | \n", "15706071 | \n", "0 | \n", "51 | \n", "23000 | \n", "1 | \n", "
397 | \n", "15654296 | \n", "1 | \n", "50 | \n", "20000 | \n", "1 | \n", "
398 | \n", "15755018 | \n", "0 | \n", "36 | \n", "33000 | \n", "0 | \n", "
399 | \n", "15594041 | \n", "1 | \n", "49 | \n", "36000 | \n", "1 | \n", "
400 rows × 5 columns
\n", "LogisticRegression()In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
LogisticRegression()