150 lines
3.6 KiB
Markdown
150 lines
3.6 KiB
Markdown
|
# M1 - Crud Operations
|
||
|
|
||
|
**Problem Statement:**
|
||
|
Design and Develop MongoDB Queries using CRUD operations:
|
||
|
Create Employee collection by considering following Fields:
|
||
|
i. Name: Embedded Doc (FName, LName)
|
||
|
ii. Company Name: String
|
||
|
iii. Salary: Number
|
||
|
iv. Designation: String
|
||
|
v. Age: Number
|
||
|
vi. Expertise: Array
|
||
|
vii. DOB: String or Date
|
||
|
viii. Email id: String
|
||
|
ix. Contact: String
|
||
|
x. Address: Array of Embedded Doc (PAddr, LAddr)
|
||
|
|
||
|
Insert at least 5 documents in collection by considering above attribute and execute following queries:
|
||
|
1. Select all documents where the Designation field has the value
|
||
|
"Programmer" and the value of the salary field is greater than
|
||
|
30000.
|
||
|
2. Creates a new document if no document in the employee collection
|
||
|
contains
|
||
|
{Designation: "Tester", Company_name: "TCS", Age: 25}
|
||
|
3. Increase salary of each Employee working with “Infosys" 10000.
|
||
|
4. Finds all employees working with "TCS" and reduce their salary
|
||
|
by 5000.
|
||
|
5. Return documents where Designation is not equal to "Tester".
|
||
|
6. Find all employee with Exact Match on an Array having Expertise:
|
||
|
['Mongodb','Mysql','Cassandra']
|
||
|
|
||
|
---
|
||
|
|
||
|
## Creating database & collection:
|
||
|
|
||
|
```json
|
||
|
use empDB1
|
||
|
db.createCollection("Employee")
|
||
|
|
||
|
```
|
||
|
|
||
|
## Inserting data:
|
||
|
|
||
|
```json
|
||
|
db.Employee.insertMany([
|
||
|
{
|
||
|
Name: {FName: "Ayush", LName: "Kalaskar"},
|
||
|
Company: "TCS",
|
||
|
Salary: 45000,
|
||
|
Designation: "Programmer",
|
||
|
Age: 55,
|
||
|
Expertise: ['Docker', 'Linux', 'Networking', 'Politics'],
|
||
|
DOB: new Date("1969-03-12"),
|
||
|
Email: "ayush.k@tcs.com",
|
||
|
Contact: 9972410427,
|
||
|
Address: [{PAddr: "Kokan, Maharashtra"}, {LAddr: "Lohegaon, Pune"}]
|
||
|
},
|
||
|
{
|
||
|
Name: {FName: "Mehul", LName: "Patil"},
|
||
|
Company: "MEPA",
|
||
|
Salary: 55000,
|
||
|
Designation: "Tester",
|
||
|
Age: 60,
|
||
|
Expertise: ['HTML', 'CSS', 'Javascript', 'Teaching'],
|
||
|
DOB: new Date("1964-06-22"),
|
||
|
Email: "mehul.p@mepa.com",
|
||
|
Contact: 9972410426,
|
||
|
Address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune"}]
|
||
|
},
|
||
|
{
|
||
|
Name: {FName: "Himanshu", LName: "Patil"},
|
||
|
Company: "Infosys",
|
||
|
Salary: 85000,
|
||
|
Designation: "Developer",
|
||
|
Age: 67,
|
||
|
Expertise: ['Mongodb', 'Mysql', 'Cassandra', 'Farming'],
|
||
|
DOB: new Date("1957-04-28"),
|
||
|
Email: "himanshu.p@infosys.com",
|
||
|
Contact: 9972410425,
|
||
|
Address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune"}]
|
||
|
}
|
||
|
])
|
||
|
|
||
|
```
|
||
|
|
||
|
## Queries
|
||
|
|
||
|
1. Select all documents where the Designation field has the value "Programmer" and the value of the salary field is greater than 30000.
|
||
|
```json
|
||
|
db.Employee.find(
|
||
|
{ Designation: "Programmer", Salary: { $gt: 30000 } }
|
||
|
)
|
||
|
|
||
|
```
|
||
|
|
||
|
2. Creates a new document if no document in the employee collection contains `{Designation: "Tester", Company_name: "TCS", Age: 25}`
|
||
|
```json
|
||
|
db.Employee.updateOne(
|
||
|
{ Designation: "Tester", Company: "TCS", Age: 25 },
|
||
|
{ $setOnInsert: {
|
||
|
|
||
|
Name: {FName: "Karan", LName: "Salvi"},
|
||
|
Salary: 67500,
|
||
|
Expertise: ['Blockchain', 'C++', 'Python', 'Fishing'],
|
||
|
DOB: new Date("1999-11-01"),
|
||
|
Email: "karan.s@tcs.com",
|
||
|
Contact: 9972410424,
|
||
|
Address: [{PAddr: "Kolhapur, Maharashtra"}, {LAddr: "Viman Nagar, Pune"}]
|
||
|
}
|
||
|
},
|
||
|
{ upsert: true }
|
||
|
)
|
||
|
|
||
|
```
|
||
|
|
||
|
3. Increase salary of each Employee working with “Infosys" 10000.
|
||
|
```json
|
||
|
db.Employee.updateMany(
|
||
|
{ Company: "Infosys" },
|
||
|
{ $inc: { Salary: 10000 } }
|
||
|
)
|
||
|
|
||
|
```
|
||
|
|
||
|
4. Finds all employees working with "TCS" and reduce their salary by 5000.
|
||
|
```json
|
||
|
db.Employee.updateMany(
|
||
|
{ Company: "TCS" },
|
||
|
{ $inc: { Salary: -5000 } }
|
||
|
)
|
||
|
|
||
|
```
|
||
|
|
||
|
5. Return documents where Designation is not equal to "Tester".
|
||
|
```json
|
||
|
db.Employee.find(
|
||
|
{ Designation: { $ne: "Tester"} }
|
||
|
)
|
||
|
|
||
|
```
|
||
|
|
||
|
6. Find all employee with Exact Match on an Array having Expertise: `['Mongodb','Mysql','Cassandra']`
|
||
|
```json
|
||
|
db.Employee.find(
|
||
|
{ Expertise: { $all: ['Mongodb', 'Mysql', 'Cassandra'] } }
|
||
|
)
|
||
|
|
||
|
```
|
||
|
|
||
|
---
|