206 lines
4.8 KiB
Markdown
206 lines
4.8 KiB
Markdown
|
# M4 - Aggregation and Indexing
|
||
|
|
||
|
**Problem Statement:**
|
||
|
Design and Develop MongoDB Queries using Aggregation operations:
|
||
|
Create Employee collection by considering following Fields:
|
||
|
i. Emp_id : Number
|
||
|
ii. Name: Embedded Doc (FName, LName)
|
||
|
iii. Company Name: String
|
||
|
iv. Salary: Number
|
||
|
v. Designation: String
|
||
|
vi. Age: Number
|
||
|
vii. Expertise: Array
|
||
|
viii. DOB: String or Date
|
||
|
ix. Email id: String
|
||
|
x. Contact: String
|
||
|
xi. Address: Array of Embedded Doc (PAddr, LAddr)
|
||
|
Insert at least 5 documents in collection by considering above
|
||
|
attribute and execute following:
|
||
|
1. Using aggregation Return Designation with Total Salary is Above
|
||
|
200000.
|
||
|
2. Using Aggregate method returns names and _id in upper case and
|
||
|
in alphabetical order.
|
||
|
3. Using aggregation method find Employee with Total Salary for
|
||
|
Each City with Designation="DBA".
|
||
|
4. Create Single Field Indexes on Designation field of employee
|
||
|
collection
|
||
|
5. To Create Multikey Indexes on Expertise field of employee
|
||
|
collection.
|
||
|
6. Create an Index on Emp_id field, compare the time require to
|
||
|
search Emp_id before and after creating an index. (Hint Add at
|
||
|
least 10000 Documents)
|
||
|
7. Return a List of Indexes on created on employee Collection.
|
||
|
|
||
|
---
|
||
|
|
||
|
## Creating database & collection:
|
||
|
|
||
|
```json
|
||
|
use empDB2
|
||
|
db.createCollection("Employee")
|
||
|
|
||
|
```
|
||
|
|
||
|
## Inserting data:
|
||
|
|
||
|
```json
|
||
|
db.Employee.insertMany([
|
||
|
{
|
||
|
Name: {FName: "Ayush", LName: "Kalaskar"},
|
||
|
Company: "TCS",
|
||
|
Salary: 45000,
|
||
|
Designation: "Programmer",
|
||
|
Age: 24,
|
||
|
Expertise: ['Docker', 'Linux', 'Networking', 'Politics'],
|
||
|
DOB: new Date("1998-03-12"),
|
||
|
Email: "ayush.k@tcs.com",
|
||
|
Contact: 9972410427,
|
||
|
Address: [{PAddr: "Kokan, Maharashtra"}, {LAddr: "Lohegaon, Pune", Pin_code: 411014}]
|
||
|
},
|
||
|
{
|
||
|
Name: {FName: "Mehul", LName: "Patil"},
|
||
|
Company: "MEPA",
|
||
|
Salary: 55000,
|
||
|
Designation: "Tester",
|
||
|
Age: 20,
|
||
|
Expertise: ['HTML', 'CSS', 'Javascript', 'Teaching'],
|
||
|
DOB: new Date("1964-06-22"),
|
||
|
Email: "mehul.p@mepa.com",
|
||
|
Contact: 9972410426,
|
||
|
Address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune", Pin_code: 411001}]
|
||
|
},
|
||
|
{
|
||
|
Name: {FName: "Himanshu", LName: "Patil"},
|
||
|
Company: "Infosys",
|
||
|
Salary: 85000,
|
||
|
Designation: "Developer",
|
||
|
Age: 67,
|
||
|
Expertise: ['Mongodb', 'Mysql', 'Cassandra', 'Farming'],
|
||
|
DOB: new Date("1957-04-28"),
|
||
|
Email: "himanshu.p@infosys.com",
|
||
|
Contact: 9972410425,
|
||
|
Address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune", Pin_code: 411001}]
|
||
|
},
|
||
|
{
|
||
|
Name: {FName: "Tanmay", LName: "Macho"},
|
||
|
Company: "Wayne Industries",
|
||
|
Salary: 95000,
|
||
|
Designation: "DBA",
|
||
|
Age: 75,
|
||
|
Expertise: ['Blockchain', 'Hashing', 'Encryption', 'Nerd'],
|
||
|
DOB: new Date("1949-12-28"),
|
||
|
Email: "tanmay.m@wayne.com",
|
||
|
Contact: 9972410426,
|
||
|
Address: [{PAddr: "Viman Nagar, Pune"}, {LAddr: "Viman Nagar, Pune", Pin_code: 411001}]
|
||
|
}
|
||
|
])
|
||
|
|
||
|
```
|
||
|
|
||
|
## Queries
|
||
|
|
||
|
1. Using aggregation Return Designation with Total Salary is Above 200000.
|
||
|
```json
|
||
|
db.Employee.aggregate([
|
||
|
{
|
||
|
$group: {
|
||
|
_id: "$Designation",
|
||
|
TotalSalary: { $sum: "$Salary" }
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
$match: {
|
||
|
TotalSalary: { $gt: 20000 }
|
||
|
}
|
||
|
}
|
||
|
])
|
||
|
|
||
|
```
|
||
|
|
||
|
2. Using Aggregate method returns names and _id in upper case and in alphabetical order.
|
||
|
```json
|
||
|
db.Employee.aggregate([
|
||
|
{
|
||
|
$project: {
|
||
|
_id: 1,
|
||
|
Name: { $toUpper: { $concat: [ "$Name.FName", " ", "$Name.LName" ] } }
|
||
|
}
|
||
|
},
|
||
|
{ $sort: { Name: 1 } }
|
||
|
])
|
||
|
|
||
|
```
|
||
|
|
||
|
3. Using aggregation method find Employee with Total Salary for Each City with Designation="DBA".
|
||
|
```json
|
||
|
db.Employee.aggregate([
|
||
|
{
|
||
|
$match: {
|
||
|
Designation: "DBA"
|
||
|
}
|
||
|
},
|
||
|
{
|
||
|
$group: {
|
||
|
_id: "$Address.PAddr",
|
||
|
Salary: { $sum: "$Salary" }
|
||
|
}
|
||
|
}
|
||
|
])
|
||
|
|
||
|
```
|
||
|
|
||
|
4. Create Single Field Indexes on Designation field of employee collection
|
||
|
```json
|
||
|
db.Employee.createIndex( { Designation: 1 } )
|
||
|
|
||
|
```
|
||
|
|
||
|
5. To Create Multikey Indexes on Expertise field of employee collection.
|
||
|
```json
|
||
|
db.Employee.createIndex( { Expertise: 1 } )
|
||
|
|
||
|
```
|
||
|
|
||
|
6. Create an Index on Emp_id field, compare the time require to search Emp_id before and after creating an index. (Hint Add at least 10000 Documents)
|
||
|
```json
|
||
|
// Adding 1000 employees
|
||
|
for (let i = 1; i <= 10000; i++) {
|
||
|
db.Employee.insertOne({
|
||
|
Emp_id: i,
|
||
|
Name: `Employee ${i}`,
|
||
|
Designation: `Work ${i*5}`
|
||
|
});
|
||
|
}
|
||
|
// Wait for it to insert 10000 documents!
|
||
|
|
||
|
// Time without index
|
||
|
let startTime = new Date();
|
||
|
db.Employee.find({ Emp_id: 7500 })
|
||
|
let endTime = new Date();
|
||
|
print("Time taken to search without index: " + (endTime - startTime) + " ms");
|
||
|
|
||
|
// Creating index on Emp_id
|
||
|
db.Employee.createIndex( { Emp_id: 1 });
|
||
|
|
||
|
// Time with index
|
||
|
startTime = new Date();
|
||
|
db.Employee.find({ Emp_id: 7500 })
|
||
|
endTime = new Date();
|
||
|
print("Time taken to search with index: " + (endTime - startTime) + " ms");
|
||
|
|
||
|
```
|
||
|
|
||
|
<details>
|
||
|
<summary>Output for query 6:</summary>
|
||
|
Time taken to search without index: 41 ms<br>
|
||
|
Time taken to search with index: 29 ms<br>
|
||
|
</details>
|
||
|
|
||
|
7. Return a List of Indexes on created on employee Collection.
|
||
|
```sql
|
||
|
db.Employee.getIndexes()
|
||
|
|
||
|
```
|
||
|
|
||
|
---
|