diff --git a/Practical/Practical Exam/MongoDB/M4 - Aggregation.md b/Practical/Practical Exam/MongoDB/M4 - Aggregation.md new file mode 100644 index 0000000..61ac5ae --- /dev/null +++ b/Practical/Practical Exam/MongoDB/M4 - Aggregation.md @@ -0,0 +1,205 @@ +# M4 - Aggregation + +**Problem Statement:** +Design and Develop MongoDB Queries using Aggregation operations: +Create Employee collection by considering following Fields: +i. Emp_id : Number +ii. Name: Embedded Doc (FName, LName) +iii. Company Name: String +iv. Salary: Number +v. Designation: String +vi. Age: Number +vii. Expertise: Array +viii. DOB: String or Date +ix. Email id: String +x. Contact: String +xi. Address: Array of Embedded Doc (PAddr, LAddr) +Insert at least 5 documents in collection by considering above +attribute and execute following: +1. Using aggregation Return Designation with Total Salary is Above +200000. +2. Using Aggregate method returns names and _id in upper case and +in alphabetical order. +3. Using aggregation method find Employee with Total Salary for +Each City with Designation="DBA". +4. Create Single Field Indexes on Designation field of employee +collection +5. To Create Multikey Indexes on Expertise field of employee +collection. +6. Create an Index on Emp_id field, compare the time require to +search Emp_id before and after creating an index. (Hint Add at +least 10000 Documents) +7. Return a List of Indexes on created on employee Collection. + +--- + +## Creating database & collection: + +```json +use empDB +db.createCollection("Employee") + +``` + +## Inserting data: + +```json +db.Employee.insertMany([ +{ + Name: {FName: "Ayush", LName: "Kalaskar"}, + Company: "TCS", + Salary: 45000, + Designation: "Programmer", + Age: 24, + Expertise: ['Docker', 'Linux', 'Networking', 'Politics'], + DOB: new Date("1998-03-12"), + Email: "ayush.k@tcs.com", + Contact: 9972410427, + Address: [{PAddr: "Kokan, Maharashtra"}, {LAddr: "Lohegaon, Pune", Pin_code: 411014}] +}, +{ + Name: {FName: "Mehul", LName: "Patil"}, + Company: "MEPA", + Salary: 55000, + Designation: "Tester", + Age: 20, + Expertise: ['HTML', 'CSS', 'Javascript', 'Teaching'], + DOB: new Date("1964-06-22"), + Email: "mehul.p@mepa.com", + Contact: 9972410426, + Address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune", Pin_code: 411001}] +}, +{ + Name: {FName: "Himanshu", LName: "Patil"}, + Company: "Infosys", + Salary: 85000, + Designation: "Developer", + Age: 67, + Expertise: ['Mongodb', 'Mysql', 'Cassandra', 'Farming'], + DOB: new Date("1957-04-28"), + Email: "himanshu.p@infosys.com", + Contact: 9972410425, + Address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune", Pin_code: 411001}] +}, +{ + Name: {FName: "Tanmay", LName: "Macho"}, + Company: "Wayne Industries", + Salary: 95000, + Designation: "DBA", + Age: 75, + Expertise: ['Blockchain', 'Hashing', 'Encryption', 'Nerd'], + DOB: new Date("1949-12-28"), + Email: "tanmay.m@wayne.com", + Contact: 9972410425, + Address: [{PAddr: "Viman Nagar, Pune"}, {LAddr: "Viman Nagar, Pune", Pin_code: 411001}] +} +]) + +``` + +## Queries + +1. Using aggregation Return Designation with Total Salary is Above 200000. +```json +db.Employee.aggregate([ + { + $group: { + _id: "$Designation", + TotalSalary: { $sum: "$Salary" } + } + }, + { + $match: { + TotalSalary: { $gt: 20000 } + } + } +]) + +``` + +2. Using Aggregate method returns names and _id in upper case and in alphabetical order. +```json +db.Employee.aggregate([ + { + $project: { + _id: 1, + Name: { $toUpper: { $concat: [ "$Name.FName", " ", "$Name.LName" ] } } + } + }, + { $sort: { Name: 1 } } +]) + +``` + +3. Using aggregation method find Employee with Total Salary for Each City with Designation="DBA". +```json +db.Employee.aggregate([ + { + $match: { + Designation: "DBA" + } + }, + { + $group: { + _id: "$Address.PAddr", + Salary: { $sum: "$Salary" } + } + } +]) + +``` + +4. Create Single Field Indexes on Designation field of employee collection +```json +db.Employee.createIndex( { Designation: 1 } ) + +``` + +5. To Create Multikey Indexes on Expertise field of employee collection. +```json +db.Employee.createIndex( { Expertise: 1 } ) + +``` + +6. Create an Index on Emp_id field, compare the time require to search Emp_id before and after creating an index. (Hint Add at least 10000 Documents) +```json +// Adding 1000 employees +for (let i = 1; i <= 10000; i++) { + db.Employee.insertOne({ + Emp_id: i, + Name: `Employee ${i}`, + Designation: `${Math.floor(Math.random() * 5) + 1}` + }); +} +// Wait for it to insert 10000 documents + +// Time without index +let startTime = new Date(); +db.Employee.find({ Emp_id: 7500 }).toArray(); +let endTime = new Date(); +print("Time taken to search without index: " + (endTime - startTime) + " ms"); + +// Creating index on Emp_id +db.Employee.createIndex( { Emp_id: 1 }); + +// Time with index +startTime = new Date(); +db.Employee.find({ Emp_id: 7500 }).toArray(); +endTime = new Date(); +print("Time taken to search with index: " + (endTime - startTime) + " ms"); + +``` + +
+ Output for query 6: + Time taken to search without index: 51 ms
+ Time taken to search with index: 48 ms
+
+ +7. Return a List of Indexes on created on employee Collection. +```sql +db.Employee.getIndexes() + +``` + +---