Compare commits
2 Commits
607730bcfb
...
6eae704642
Author | SHA1 | Date | |
---|---|---|---|
6eae704642 | |||
08d1bbd33c |
@ -14,8 +14,7 @@ viii. Email id: String
|
||||
ix. Contact: String
|
||||
x. Address: Array of Embedded Doc (PAddr, LAddr)
|
||||
|
||||
Insert at least 5 documents in collection by considering above
|
||||
attribute and execute following queries:
|
||||
Insert at least 5 documents in collection by considering above attribute and execute following queries:
|
||||
1. Select all documents where the Designation field has the value
|
||||
"Programmer" and the value of the salary field is greater than
|
||||
30000.
|
||||
|
157
Practical/Practical Exam/M2 - Crud operations.md
Normal file
157
Practical/Practical Exam/M2 - Crud operations.md
Normal file
@ -0,0 +1,157 @@
|
||||
# M2 - Crud Operations
|
||||
|
||||
**Problem Statement:**
|
||||
Design and Develop MongoDB Queries using CRUD operations:
|
||||
Create Employee collection by considering following Fields:
|
||||
i. Name: Embedded Doc (FName, LName)
|
||||
ii. Company Name: String
|
||||
iii. Salary: Number
|
||||
iv. Designation: String
|
||||
v. Age: Number
|
||||
vi. Expertise: Array
|
||||
vii. DOB: String or Date
|
||||
viii. Email id: String
|
||||
ix. Contact: String
|
||||
x. Address: Array of Embedded Doc (PAddr, LAddr)
|
||||
Insert at least 5 documents in collection by considering above
|
||||
attribute and execute following queries:
|
||||
1. Final name of Employee where age is less than 30 and salary more
|
||||
than 50000.
|
||||
2. Creates a new document if no document in the employee collection
|
||||
contains
|
||||
{Designation: "Tester", Company_name: "TCS", Age: 25}
|
||||
3. Selects all documents in the collection where the field age has
|
||||
a value less than 30 or the value of the salary field is greater
|
||||
than 40000.
|
||||
4. Find documents where Designation is not equal to "Developer".
|
||||
5. Find _id, Designation, Address and Name from all documents where
|
||||
Company_name is "Infosys".
|
||||
6. Display only FName and LName of all Employees
|
||||
|
||||
---
|
||||
|
||||
## Creating database & collection:
|
||||
|
||||
```json
|
||||
use empDB
|
||||
db.createCollection("Employee")
|
||||
|
||||
```
|
||||
|
||||
## Inserting data:
|
||||
|
||||
```json
|
||||
db.Employee.insertMany([
|
||||
{
|
||||
Name: {FName: "Ayush", LName: "Kalaskar"},
|
||||
Company: "TCS",
|
||||
Salary: 45000,
|
||||
Designation: "Programmer",
|
||||
Age: 24,
|
||||
Expertise: ['Docker', 'Linux', 'Networking', 'Politics'],
|
||||
DOB: new Date("1998-03-12"),
|
||||
Email: "ayush.k@tcs.com",
|
||||
contact: 9972410427,
|
||||
address: [{PAddr: "Kokan, Maharashtra"}, {LAddr: "Lohegaon, Pune"}]
|
||||
},
|
||||
{
|
||||
Name: {FName: "Mehul", LName: "Patil"},
|
||||
Company: "MEPA",
|
||||
Salary: 55000,
|
||||
Designation: "Tester",
|
||||
Age: 20,
|
||||
Expertise: ['HTML', 'CSS', 'Javascript', 'Teaching'],
|
||||
DOB: new Date("1964-06-22"),
|
||||
Email: "mehul.p@mepa.com",
|
||||
contact: 9972410426,
|
||||
address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune"}]
|
||||
},
|
||||
{
|
||||
Name: {FName: "Himanshu", LName: "Patil"},
|
||||
Company: "Infosys",
|
||||
Salary: 85000,
|
||||
Designation: "Developer",
|
||||
Age: 67,
|
||||
Expertise: ['Mongodb', 'Mysql', 'Cassandra', 'Farming'],
|
||||
DOB: new Date("1957-04-28"),
|
||||
Email: "himanshu.p@infosys.com",
|
||||
contact: 9972410425,
|
||||
address: [{PAddr: "NDB, Maharashtra"}, {LAddr: "Camp, Pune"}]
|
||||
}
|
||||
])
|
||||
|
||||
```
|
||||
|
||||
## Queries
|
||||
|
||||
1. Final name of Employee where age is less than 30 and salary more than 50000.
|
||||
```json
|
||||
db.Employee.find(
|
||||
{
|
||||
Age: { $lt: 30 },
|
||||
Salary: { $gt: 50000 }
|
||||
}
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
2. Creates a new document if no document in the employee collection contains `{Designation: "Tester", Company_name: "TCS", Age: 25}`
|
||||
```json
|
||||
db.Employee.updateOne(
|
||||
{Designation: "Tester", Company: "TCS", Age: 25},
|
||||
{ $setOnInsert:
|
||||
{
|
||||
Name: {FName: "Karan", LName: "Salvi"},
|
||||
Salary: 35000,
|
||||
Expertise: ['Blockchain', 'C++', 'Python', 'Fishing'],
|
||||
DOB: new Date("1999-11-01"),
|
||||
Email: "karan.s@tcs.com",
|
||||
Contact: 9972410424,
|
||||
Address: [{PAddr: "Kolhapur, Maharashtra"}, {LAddr: "Viman Nagar, Pune"}]
|
||||
}
|
||||
},
|
||||
{ upsert: true }
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
3. Selects all documents in the collection where the field age has a value less than 30 or the value of the salary field is greater than 40000.
|
||||
```json
|
||||
db.Employee.find(
|
||||
{
|
||||
Age: { $lt: 30 },
|
||||
Salary: { $gt: 40000 }
|
||||
}
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
4. Find documents where Designation is not equal to "Developer".
|
||||
```json
|
||||
db.Employee.find(
|
||||
{
|
||||
Designation: { $ne: "Developer" }
|
||||
}
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
5. Find _id, Designation, Address and Name from all documents where Company_name is "Infosys".
|
||||
```json
|
||||
db.Employee.find(
|
||||
{ Company: "Infosys" },
|
||||
{ _id: 1, Designation: 1, Address: 1, Name: 1 }
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
6. Display only FName and LName of all Employees.
|
||||
```json
|
||||
db.Employee.find(
|
||||
{},
|
||||
{"Name.FName": 1, "Name.LName": 1}
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
---
|
Loading…
Reference in New Issue
Block a user