
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Unit 2:
SQL AND PL/SQL

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Outline

 SQL: Characteristics and advantages,

 SQL Data Types and Literals,

 DDL, DML, DCL, TCL,

 SQL Operators,

 Tables: Creating, Modifying, Deleting,

 Views: Creating, Dropping, Updating using Views,

 Indexes,

 SQL DML Queries: SELECT Query and clauses,

 Set Operations, Predicates and Joins, Set membership,

 Tuple Variables, Set comparison,

 Ordering of Tuples,

 Aggregate Functions,

 Nested Queries,

 Database Modification using SQL Insert, Update and Delete Queries.

 PL/SQL: concept of Stored Procedures & Functions, Cursors, Triggers,
Assertions, roles and privileges , Embedded SQL, Dynamic SQL.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Introduction to SQL

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Outline

 Overview of The SQL Query Language

 Data Definition

 Basic Query Structure

 Additional Basic Operations

 Set Operations

 Null Values

 Aggregate Functions

 Nested Subqueries

 Modification of the Database

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

History

 IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

 SQL-86

 SQL-89

 SQL-92

 SQL:1999 (language name became Y2K compliant!)

 SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

 Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Data Definition Language

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 And as we will see later, also other information such as

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the specification
of information about relations, including:

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified
maximum length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point. (ex., numeric(3,1),
allows 44.5 to be stores exactly, but not 444.5 or 0.32)

 real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least
n digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

Create Table Construct

 An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 6th Edition

Integrity Constraints in Create Table

 not null

 primary key (A1, ..., An)

 foreign key (Am, ..., An) references r

Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

primary key declaration on an attribute automatically ensures not null

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 6th Edition

And a Few More Relation Definitions

 create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

 Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

And more still

 create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),

foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 6th Edition

Updates to tables

 Insert

 insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
 Delete

 Remove all tuples from the student relation

 delete from student

 Drop Table

 drop table r

 Alter

 alter table r add A D

 where A is the name of the attribute to be added to relation
r and D is the domain of A.

 All exiting tuples in the relation are assigned null as the
value for the new attribute.

 alter table r drop A

 where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 6th Edition

Basic Query Structure

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ai represents an attribute

 Ri represents a relation

 P is a predicate.

 The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 6th Edition

The select Clause

 The select clause lists the attributes desired in the result of a query

 corresponds to the projection operation of the relational algebra

 Example: find the names of all instructors:
select name

from instructor

 NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

 E.g., Name ≡ NAME ≡ name

 Some people use upper case wherever we use bold font.

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 6th Edition

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct
after select.

 Find the department names of all instructors, and remove duplicates

select distinct dept_name

from instructor

 The keyword all specifies that duplicates should not be removed.

select all dept_name

from instructor

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 6th Edition

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”
select *
from instructor

 An attribute can be a literal with no from clause

select ‘437’
 Results is a table with one column and a single row with value “437”
 Can give the column a name using:

select ‘437’ as FOO

 An attribute can be a literal with from clause

select ‘A’
from instructor

 Result is a table with one column and N rows (number of tuples in the
instructors table), each row with value “A”

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 6th Edition

The select Clause (Cont.)

 The select clause can contain arithmetic expressions involving the
operation, +, –, , and /, and operating on constants or attributes of
tuples.

 The query:

select ID, name, salary/12

from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

 Can rename “salary/12” using the as clause:

select ID, name, salary/12 as monthly_salary

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 6th Edition

The where Clause

 The where clause specifies conditions that the result must satisfy

 Corresponds to the selection predicate of the relational algebra.

 To find all instructors in Comp. Sci. dept

select name

from instructor

where dept_name = ‘Comp. Sci.'

 Comparison results can be combined using the logical connectives
and, or, and not

 To find all instructors in Comp. Sci. dept with salary > 80000

select name

from instructor

where dept_name = ‘Comp. Sci.' and salary > 80000

 Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 6th Edition

The from Clause

 The from clause lists the relations involved in the query

 Corresponds to the Cartesian product operation of the relational
algebra.

 Find the Cartesian product instructor X teaches

select
from instructor, teaches

 generates every possible instructor – teaches pair, with all attributes
from both relations.

 For common attributes (e.g., ID), the attributes in the resulting table
are renamed using the relation name (e.g., instructor.ID)

 Cartesian product not very useful directly, but useful combined with
where-clause condition (selection operation in relational algebra).

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 6th Edition

Cartesian Product

instructor teaches

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 6th Edition

Examples

 Find the names of all instructors who have taught some course and the
course_id

 select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID

 Find the names of all instructors in the Art department who have taught
some course and the course_id

 select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID and instructor. dept_name = ‘Art’

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 6th Edition

The Rename Operation

 The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.
 select distinct T.name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

 Keyword as is optional and may be omitted
instructor as T ≡ instructor T

©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 6th Edition

Cartesian Product Example

 Relation emp-super

 Find the supervisor of “Bob”
 Find the supervisor of the supervisor of “Bob”
 Find ALL the supervisors (direct and indirect) of “Bob

person supervisor

Bob Alice
Mary Susan
Alice David
David Mary

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 6th Edition

String Operations

 SQL includes a string-matching operator for comparisons on character
strings. The operator like uses patterns that are described using two
special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the substring
“dar”.

select name

from instructor

where name like '%dar%'

 Match the string “100%”
like ‘100 \%' escape '\'

in that above we use backslash (\) as the escape character.

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 6th Edition

String Operations (Cont.)

 Patterns are case sensitive.

 Pattern matching examples:

 ‘Intro%’ matches any string beginning with “Intro”.
 ‘%Comp%’ matches any string containing “Comp” as a substring.
 ‘_ _ _’ matches any string of exactly three characters.
 ‘_ _ _ %’ matches any string of at least three characters.

 SQL supports a variety of string operations such as

 concatenation (using “||”)
 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 6th Edition

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors

select distinct name

from instructor

order by name

 We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

 Example: order by name desc

 Can sort on multiple attributes

 Example: order by dept_name, name

©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 6th Edition

Where Clause Predicates

 SQL includes a between comparison operator

 Example: Find the names of all instructors with salary between $90,000
and $100,000 (that is, $90,000 and $100,000)

 select name

from instructor

where salary between 90000 and 100000

 Tuple comparison

 select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 6th Edition

Duplicates

 In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

 Multiset versions of some of the relational algebra operators – given
multiset relations r1 and r2:

1. (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies

selections ,, then there are c1 copies of t1 in (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of tuple
A (t1) in A (r1) where A (t1) denotes the projection of the single
tuple t1.

3. r1 x r2: If there are c1 copies of tuple t1 in r1 and c2 copies of tuple
t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 6th Edition

Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C) are as
follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm

where P

is equivalent to the multiset version of the expression:

))((
21,,, 21 mPAAA

rrr
n

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 6th Edition

Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010

 Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union

(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)
except

(select course_id from section where sem = ‘Spring’ and year = 2010)

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 6th Edition

Set Operations (Cont.)

 Find the salaries of all instructors that are less than the largest salary.

 select distinct T.salary

from instructor as T, instructor as S
where T.salary < S.salary

 Find all the salaries of all instructors

 select distinct salary

from instructor

 Find the largest salary of all instructors.

 (select “second query”)
except
(select “first query”)

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 6th Edition

Set Operations (Cont.)

 Set operations union, intersect, and except

 Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the corresponding multiset versions union
all, intersect all and except all.

 Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 6th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for
some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 The predicate is null can be used to check for null values.

 Example: Find all instructors whose salary is null.

select name

from instructor

where salary is null

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 6th Edition

Null Values and Three Valued Logic

 Three values – true, false, unknown

 Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

 Three-valued logic using the value unknown:

 OR: (unknown or true) = true,
(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to
unknown

 Result of where clause predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 6th Edition

Aggregate Functions

 These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 6th Edition

Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science
department

 select avg (salary)
from instructor

where dept_name= ’Comp. Sci.’;
 Find the total number of instructors who teach a course in the Spring

2010 semester

 select count (distinct ID)
from teaches

where semester = ’Spring’ and year = 2010;

 Find the number of tuples in the course relation

 select count (*)
from course;

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 6th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department

 select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

avg_salary

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 6th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear
in group by list

 /* erroneous query */
select dept_name, ID, avg (salary)
from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 6th Edition

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose
average salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select dept_name, avg (salary)
from instructor

group by dept_name

having avg (salary) > 42000;

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 6th Edition

Null Values and Aggregates

 Total all salaries

select sum (salary)
from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null values
on the aggregated attributes

 What if collection has only null values?

 count returns 0

 all other aggregates return null

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 6th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A subquery
is a select-from-where expression that is nested within another query.

 The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

 Ai can be replaced be a subquery that generates a single value.

 ri can be replaced by any valid subquery

 P can be replaced with an expression of the form:

B <operation> (subquery)

Where B is an attribute and <operation> to be defined later.

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 6th Edition

Subqueries in the Where Clause

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 6th Edition

Subqueries in the Where Clause

 A common use of subqueries is to perform tests:

 For set membership

 For set comparisons

 For set cardinality.

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 6th Edition

Set Membership

 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id in (select course_id

from section

where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year= 2010);

©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 6th Edition

Set Membership (Cont.)

 Find the total number of (distinct) students who have taken course
sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year

from teaches

where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 6th Edition

Set Comparison – “some” Clause

 Find names of instructors with salary greater than that of some (at
least one) instructor in the Biology department.

 Same query using > some clause

select name

from instructor

where salary > some (select salary

from instructor

where dept name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ’Biology’;

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 6th Edition

Definition of “some” Clause

 F <comp> some r t r such that (F <comp> t)
Where <comp> can be:

0

5

6

(5 < some) = true

0

5

0

) = false

5

0

5(5 some) = true (since 0 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) in

However, (some) not in

©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 6th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept name = ’Biology’);

©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 6th Edition

Definition of “all” Clause

 F <comp> all r t r (F <comp> t)

0

5

6

(5 < all) = false

6
10

4

) = true

5

4

6(5 all) = true (since 5 4 and 5 6)

(5 < all

) = false(5 = all

(all) not in

However, (= all) in

©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 6th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument
subquery is nonempty.

 exists r r Ø

 not exists r r = Ø

©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 6th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course_id

from section as S
where semester = ’Fall’ and year = 2009 and

exists (select *
from section as T
where semester = ’Spring’ and year= 2010

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query

 Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 6th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology
department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)
except

(select T.course_id

from takes as T

where S.ID = T.ID));

• First nested query lists all courses offered in Biology
• Second nested query lists all courses a particular student took

 Note that X – Y = Ø X Y

 Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 6th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any
duplicate tuples in its result.

 The unique construct evaluates to “true” if a given subquery
contains no duplicates .

 Find all courses that were offered at most once in 2009

select T.course_id

from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2009);

©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 6th Edition

Subqueries in the Form Clause

©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 6th Edition

Subqueries in the Form Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)
where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)
from instructor

group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 6th Edition

With Clause

 The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)

select department.name

from department, max_budget

where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 6th Edition

Complex Queries using With Clause

 Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),

dept_total_avg(value) as
(select avg(value)
from dept_total)

select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;

©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 6th Edition

Subqueries in the Select Clause

©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 6th Edition

Scalar Subquery

 Scalar subquery is one which is used where a single value is
expected

 List all departments along with the number of instructors in each
department

select dept_name,
(select count(*)

from instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

 Runtime error if subquery returns more than one result tuple

©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 6th Edition

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan3.61Database System Concepts - 6th Edition

Deletion

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department
delete from instructor

where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor

where dept name in (select dept name

from department

where building = ’Watson’);

©Silberschatz, Korth and Sudarshan3.62Database System Concepts - 6th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)

from instructor);

 Problem: as we delete tuples from deposit, the average salary
changes

 Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without

recomputing avg or retesting the tuples)

©Silberschatz, Korth and Sudarshan3.63Database System Concepts - 6th Edition

Insertion

 Add a new tuple to course

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null

insert into student

values (’3003’, ’Green’, ’Finance’, null);

©Silberschatz, Korth and Sudarshan3.64Database System Concepts - 6th Edition

Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

 The select from where statement is evaluated fully before any of its
results are inserted into the relation.

Otherwise queries like

insert into table1 select * from table1

would cause problem

©Silberschatz, Korth and Sudarshan3.65Database System Concepts - 6th Edition

Updates

 Increase salaries of instructors whose salary is over $100,000
by 3%, and all others by a 5%

 Write two update statements:

update instructor

set salary = salary * 1.03
where salary > 100000;

update instructor

set salary = salary * 1.05
where salary <= 100000;

 The order is important

 Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.66Database System Concepts - 6th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement

update instructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

©Silberschatz, Korth and Sudarshan3.67Database System Concepts - 6th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

update student S

set tot_cred = (select sum(credits)
from takes, course

where takes.course_id = course.course_id and
S.ID= takes.ID.and
takes.grade <> ’F’ and
takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

PL - Advanced SQL

©Silberschatz, Korth and Sudarshan3.69Database System Concepts - 6th Edition

Outline

 Accessing SQL From a Programming Language

 Functions and Procedural Constructs

 Triggers

 Recursive Queries

 Advanced Aggregation Features

 OLAP

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Accessing SQL From a Programming Language

©Silberschatz, Korth and Sudarshan3.71Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

 API (application-program interface) for a program to interact with a
database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 Various tools:

 JDBC (Java Database Connectivity) works with Java

 ODBC (Open Database Connectivity) works with C, C++, C#,
and Visual Basic. Other API’s such as ADO.NET sit on top of
ODBC

 Embedded SQL

©Silberschatz, Korth and Sudarshan3.72Database System Concepts - 6th Edition

JDBC

 JDBC is a Java API for communicating with database systems
supporting SQL.

 JDBC supports a variety of features for querying and updating data,
and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object
 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan3.73Database System Concepts - 6th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard

 standard for application program to communicate with a
database server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan3.74Database System Concepts - 6th Edition

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, C++, Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host
language comprise embedded SQL.

 The basic form of these languages follows that of the System R
embedding of SQL into PL/1.

 EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

 In some languages, like COBOL, the semicolon is replaced with
END-EXEC

 In Java embedding uses # SQL { …. };

©Silberschatz, Korth and Sudarshan3.75Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Before executing any SQL statements, the program must first connect
to the database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be
established.

 Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (:) to distinguish from
SQL variables (e.g., :credit_amount)

 Variables used as above must be declared within DECLARE section,
as illustrated below. The syntax for declaring the variables, however,
follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}

int credit-amount ;

EXEC-SQL END DECLARE SECTION;

©Silberschatz, Korth and Sudarshan3.76Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 To write an embedded SQL query, we use the

declare c cursor for <SQL query>

statement. The variable c is used to identify the query

 Example:

 From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for
select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

©Silberschatz, Korth and Sudarshan3.77Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Example:

 From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for
select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

 The variable c (used in the cursor declaration) is used to
identify the query

©Silberschatz, Korth and Sudarshan3.78Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 The open statement for our example is as follows:

EXEC SQL open c ;

This statement causes the database system to execute the query
and to save the results within a temporary relation. The query uses
the value of the host-language variable credit-amount at the time the
open statement is executed.

 The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

©Silberschatz, Korth and Sudarshan3.79Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c ;

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan3.80Database System Concepts - 6th Edition

Updates Through Embedded SQL

 Embedded SQL expressions for database modification (update, insert,
and delete)

 Can update tuples fetched by cursor by declaring that the cursor is for
update

EXEC SQL

declare c cursor for
select *
from instructor

where dept_name = ‘Music’
for update

 We then iterate through the tuples by performing fetch operations on
the cursor (as illustrated earlier), and after fetching each tuple we
execute the following code:

update instructor

set salary = salary + 1000
where current of c

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Extensions to SQL

©Silberschatz, Korth and Sudarshan3.82Database System Concepts - 6th Edition

Functions and Procedures

 SQL:1999 supports functions and procedures

 Functions/procedures can be written in SQL itself, or in an external
programming language (e.g., C, Java).

 Functions written in an external languages are particularly useful
with specialized data types such as images and geometric objects.

 Example: functions to check if polygons overlap, or to compare
images for similarity.

 Some database systems support table-valued functions, which
can return a relation as a result.

 SQL:1999 also supports a rich set of imperative constructs, including

 Loops, if-then-else, assignment

 Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999.

©Silberschatz, Korth and Sudarshan3.83Database System Concepts - 6th Edition

SQL Functions

 Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;

select count (*) into d_count

from instructor

where instructor.dept_name = dept_name

return d_count;

end

 The function dept_count can be used to find the department names
and budget of all departments with more that 12 instructors.

select dept_name, budget

from department

where dept_count (dept_name) > 12

©Silberschatz, Korth and Sudarshan3.84Database System Concepts - 6th Edition

SQL functions (Cont.)

 Compound statement: begin … end
 May contain multiple SQL statements between begin and

end.

 returns -- indicates the variable-type that is returned (e.g.,
integer)

 return -- specifies the values that are to be returned as
result of invoking the function

 SQL function are in fact parameterized views that generalize
the regular notion of views by allowing parameters.

©Silberschatz, Korth and Sudarshan3.85Database System Concepts - 6th Edition

Table Functions

 SQL:2003 added functions that return a relation as a result

 Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))

returns table (

ID varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary

from instructor

where instructor.dept_name = instructor_of.dept_name)

 Usage

select *
from table (instructor_of (‘Music’))

©Silberschatz, Korth and Sudarshan3.86Database System Concepts - 6th Edition

SQL Procedures

 The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count

from instructor

where instructor.dept_name = dept_count_proc.dept_name

end

 Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc(‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

 SQL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan3.87Database System Concepts - 6th Edition

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

 Warning: most database systems implement their own variant of the
standard syntax below.

 Compound statement: begin … end,

 May contain multiple SQL statements between begin and end.

 Local variables can be declared within a compound statements

 While and repeat statements:

 while boolean expression do

sequence of statements ;
end while

 repeat

sequence of statements ;
until boolean expression
end repeat

©Silberschatz, Korth and Sudarshan3.88Database System Concepts - 6th Edition

Language Constructs (Cont.)

 For loop

 Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;
for r as

select budget from department

do
set n = n + r.budget

end for

©Silberschatz, Korth and Sudarshan3.89Database System Concepts - 6th Edition

Language Constructs (Cont.)

 Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

 Example procedure: registers student after ensuring classroom capacity
is not exceeded

 Returns 0 on success and -1 if capacity is exceeded

 See book (page 177) for details

 Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats

begin
…
.. signal out_of_classroom_seats

end

 The handler here is exit -- causes enclosing begin..end to be exited

 Other actions possible on exception

©Silberschatz, Korth and Sudarshan3.90Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/dept_count’

©Silberschatz, Korth and Sudarshan3.91Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 allows the definition of procedures in an imperative programming
language, (Java, C#, C or C++) which can be invoked from SQL queries.

 Functions defined in this fashion can be more efficient than functions defined
in SQL, and computations that cannot be carried out in SQL can be
executed by these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/dept_count’

©Silberschatz, Korth and Sudarshan3.92Database System Concepts - 6th Edition

External Language Routines (Cont.)

 Benefits of external language functions/procedures:

 more efficient for many operations, and more expressive power.

 Drawbacks

 Code to implement function may need to be loaded into database
system and executed in the database system’s address space.
 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

 There are alternatives, which give good security at the cost of
potentially worse performance.

 Direct execution in the database system’s space is used when
efficiency is more important than security.

©Silberschatz, Korth and Sudarshan3.93Database System Concepts - 6th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:

 Use sandbox techniques

 That is, use a safe language like Java, which cannot be used
to access/damage other parts of the database code.

 Run external language functions/procedures in a separate
process, with no access to the database process’ memory.
 Parameters and results communicated via inter-process

communication

 Both have performance overheads

 Many database systems support both above approaches as well as
direct executing in database system address space.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Triggers

©Silberschatz, Korth and Sudarshan3.95Database System Concepts - 6th Edition

Triggers

 A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

 To design a trigger mechanism, we must:

 Specify the conditions under which the trigger is to be
executed.

 Specify the actions to be taken when the trigger executes.

 Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.

 Syntax illustrated here may not work exactly on your
database system; check the system manuals

©Silberschatz, Korth and Sudarshan3.96Database System Concepts - 6th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

 For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as
extra constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ‘ ‘)
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan3.97Database System Concepts - 6th Edition

Trigger to Maintain credits_earned value

 create trigger credits_earned after update of takes on (grade)
referencing new row as nrow

referencing old row as orow

for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)
begin atomic

update student

set tot_cred= tot_cred +
(select credits

from course

where course.course_id= nrow.course_id)
where student.id = nrow.id;

end;

©Silberschatz, Korth and Sudarshan3.98Database System Concepts - 6th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a transaction

 Use for each statement instead of for each row

 Use referencing old table or referencing new table to
refer to temporary tables (called transition tables) containing
the affected rows

 Can be more efficient when dealing with SQL statements that
update a large number of rows

©Silberschatz, Korth and Sudarshan3.99Database System Concepts - 6th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as
 Maintaining summary data (e.g., total salary of each

department)
 Replicating databases by recording changes to special

relations (called change or delta relations) and having a
separate process that applies the changes over to a replica

 There are better ways of doing these now:
 Databases today provide built in materialized view facilities

to maintain summary data
 Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many
cases
 Define methods to update fields
 Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan3.100Database System Concepts - 6th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example, when
 Loading data from a backup copy
 Replicating updates at a remote site
 Trigger execution can be disabled before such actions.

 Other risks with triggers:
 Error leading to failure of critical transactions that set off

the trigger
 Cascading execution

