## Queries-B2 ### Group A > [!NOTE] > Use Employee database created in Assignment B-01 and perform following aggregation operation > Refer [Queries-B1](https://git.kska.io/sppu-te-comp-content/DatabaseManagementSystems/src/branch/main/Practical/Assignment-B1/Queries-B1.md) 1. Return Designation with Total Salary Above 20000: ```mongodb db.Employee.aggregate([ { $group: { _id: "$Designation", TotalSalary: { $sum: "$Salary" } } }, { $match: { TotalSalary: { $gt: 20000 } } } ]) ``` 2. Find Employee with Total Salary for Each City with Designation "Developer": ```mongodb db.Employee.aggregate([ { $match: { Designation: "Developer" } }, { $group: { _id: "$Address.PAddr", Total: { $sum: "$Salary" } } } ]) ``` 3. Find Total Salary of Employee with Designation "Tester" for Each Company: ```mongodb db.Employee.aggregate([ { $match: { Designation: "Tester" } }, { $group: { _id: "$Company_name", TotalSalary: { $sum: "$Salary" } } } ]) ``` 4. Returns Names and _id in Upper Case and in Alphabetical Order: ```mongodb db.Employee.aggregate([ { $project: { _id: 1, Name: { $toUpper: { $concat: ["$Name.FName", " ", "$Name.LName"] } } } }, { $sort: { Name: 1 } } ]) ``` 5. Count All Records from Collection: ```mongodb db.Employee.countDocuments() ``` 6. For Each Unique Designation, Find Avg Salary and Output Sorted by AvgSal: ```mongodb db.Employee.aggregate([ { $group: { _id: "$Designation", AvgSalary: { $avg: "$Salary" } } }, { $sort: { AvgSalary: 1 } } ]) ``` 7. Return Separate Value in the Expertise Array Where Name of Employee is "Aditya": ```mongodb db.Employee.aggregate([ { $match: { "Name.FName": "Aditya" } }, { $unwind: "$Expertise" }, { $project: { Expertise: 1 } } ]) ``` 8. Return Separate Value in the Expertise Array and Return Sum of Each Element of Array: ```mongodb db.Employee.aggregate([ { $unwind: "$Expertise" }, { $group: { _id: "$Expertise", TotalCount: { $sum: 1 } } } ]) ``` 9. Return Array for Designation Whose Address is "Pune": ```mongodb db.Employee.aggregate([ { $match: { "Address.PAddr": { $regex: "Pune" } } }, { $project: { Designation: 1 } } ]) ``` 10. Return Max and Min Salary for Each Company: ```mongodb db.Employee.aggregate([ { $group: { _id: "$Company_name", MaxSalary: { $max: "$Salary" }, MinSalary: { $min: "$Salary" } } } ]) ``` ### Group B > [!NOTE] > Use Employee database created in Assignment B-01 and perform following aggregation operation > Refer [Queries-B1](https://git.kska.io/sppu-te-comp-content/DatabaseManagementSystems/src/branch/main/Practical/Assignment-B1/Queries-B1.md) 1. Create Single Field Indexes on Designation: ```mongodb db.Employee.createIndex({ Designation: 1 }) ``` 2. Create Compound Indexes on Name and Age: ```mongodb db.Employee.createIndex({ "Name.FName": 1, Age: -1 }) ``` 3. Create Multikey Indexes on Expertise Array: ```mongodb db.Employee.createIndex({ Expertise: 1 }) ``` 4. Return a List of All Indexes on Collection: ```mongodb db.Employee.getIndexes() ``` 5. Rebuild Indexes: ```mongodb db.Employee.reIndex() ``` 6. Drop Index on Remove Specific Index: ```mongodb db.Employee.dropIndex("Designation_1") ``` 7. Remove All Indexes Except for the _id Index from a Collection: ```mongodb db.Employee.dropIndexes() ```