
Prof. S. B. Shinde
Asst Professor, MESCOE Pune

Modern Education Society’s
College of Engineering, Pune

19, Late Prin. V. K. Joag Path, Wadia College Campus, Pune-411001

Affiliated to Savitribai Phule Pune University & Approved by AICTE, New Delhi.

Introduction

 In the computing system (web and business applications),

there are enormous data that comes out every day from the

web. A large section of these data is handled by Relational

database management systems (RDBMS).

 Classical relation database follow the ACID Rules:

 A database transaction must be atomic, consistent, isolated and

durable.

Prof. S. B. Shinde

Introduction

Prof. S. B. Shinde

Distributed Systems

 A distributed system consists of multiple computers and

software components that communicate through a computer

network (a local network or by a wide area network).

 A distributed system can consist of any number of possible

configurations, such as mainframes, workstations, personal

computers, and so on.

 The computers interact with each other and share the

resources of the system to achieve a common goal.

Prof. S. B. Shinde

Distributed Computing

Advantages:

 Reliability (fault tolerance)

 Scalability

 Sharing of Resources

 Flexibility

 Speed

 Open System

 Performance

Disadvantages:

 Troubleshooting

 Less Software Support

 Network infrastructure

 Security

Prof. S. B. Shinde

What is NoSQL?
 Stands for Not Only SQL.

 NoSQL is a non-relational database management systems.

 NoSQL database were developed in response to a rise in the

volume of data stored about users, objects and products, the

frequency in which this data is accessed, and performance and

processing needs.

 It is designed for distributed data stores where very large scale

of data storing needs (for example Google or Facebook which

collects TB of data every day for their users).

 These type of data storing may not require fixed schema, avoid

join operations and typically scale horizontally.

 Prof. S. B. Shinde

Why NoSQL ?

 In today’s time data is becoming easier to access and capture

through third parties such as Facebook, Google+ and others.

 Personal user information, social graphs, geo location data,

user-generated content and machine logging data are just a few

examples where the data has been increasing exponentially.

 To avail the above service properly, it is required to process

huge amount of data. Which SQL databases were never

designed.

 Instead of using structured tables to store multiple related

attributes in a row, NoSQL databases use the concept of a

key/value store.

 Prof. S. B. Shinde

Why NoSQL ?

Unstructured and Semi-

structured data

Structured data

Prof. S. B. Shinde

RDBMS vs NoSQL

RDBMS
 Structured and organized data

 Structured query language (SQL)

 Data and its relationships are

stored in separate tables

 DDL,DML

 Tight Consistency

 ACID Transaction

NoSQL
 Stands for Not Only SQL

 No declarative query language

 No predefined schema

 Key-Value pair storage, Column

Store, Document Store, Graph

databases

 Eventual consistency rather ACID

property

 Unstructured and unpredictable data

 CAP Theorem

 Prioritizes high performance, high

availability and scalability

 BASE Transaction

Prof. S. B. Shinde

Prof. S. B. Shinde

Brief History of NoSQL

 The term NoSQL was coined by Carlo Strozzi in the year

1998. He used this term to name his Open Source, Light

Weight, DataBase which did not have an SQL interface.

 Three Eras of Databases

 RDBMS for transactions, Data Warehouse for analytics

and NoSQL for …?

 Prof. S. B. Shinde

Before NoSQL

Prof. S. B. Shinde

After NoSQL

Prof. S. B. Shinde

Type of NoSQL

 Document Oriented Databases:
 Document oriented database stores data in the form of documents.

 A collection of documents.

 A document can be in a JSON, BSON, XML, YAML, etc format.

 Data in this model is stored inside documents.

 A document is a key value collection where the key allows access to its

value.

 Documents are stored into collections in order to group different kinds of

data.

 Example: MongoDB, Elasticsearch, Couchbase Server, CouchDB, RethinkDB,

Terrastore, MarkLogic Server etc.

Relational model Document model

Tables Collections

Rows Documents

Columns Key/value pairs

Joins not available

Prof. S. B. Shinde

Type of NoSQL

 Document Oriented Databases:

Prof. S. B. Shinde

Type of NoSQL

 Column Oriented Databases ::
 Column-oriented databases primarily work on columns

and every column is treated individually.

 Column stores can improve the performance of queries as

it can access specific column data.

 High performance on aggregation queries (e.g. COUNT,

SUM, AVG, MIN, MAX).

 Works on data warehouses and business intelligence,

customer relationship management (CRM), Library card

catalogs etc.

 Example: Hadoop/Hbase, Cassandra, Amazon SimpleDB,

HPCC, Cloudera etc.

 Prof. S. B. Shinde

Type of NoSQL

 Column Oriented Databases

Prof. S. B. Shinde

Type of NoSQL

 Key-Value Databases:
 In key-value database each item in the database is stored as

an attribute name (or “key”), together with its value.

 Key-value stores are most basic types of NoSQL databases.

 Designed to handle huge amounts of data.

 In the key-value storage, database stores data as hash table

where each key is unique and the value can be string, JSON,

BLOB (basic large object) etc.

 Key-Value stores follows the 'Availability' and 'Partition'

aspects of CAP theorem.

 Key-Value stores can be used as collections, dictionaries,

associative arrays etc.

 Example: Redis, Riak, Azure Table Storage, DynamoDB,

Berkeley DB, LevelDB, FoundationDB etc.

Prof. S. B. Shinde

Type of NoSQL

 Key-Value Databases:

Prof. S. B. Shinde

Type of NoSQL

 Graph database:
 A graph database uses graph structures with nodes, edges,

and properties to represent and store data in database.

 A graph databases is faster for associative data sets and

hence it’s gaining popularity these days.

 Graph stores are used to store information about networks,

such as social connections.

 Each node represents an entity (such as a student or

business) and each edge represents a connection or

relationship between two node

 Example: HyperGraphDB, GraphBase Neo4J, WhiteDB,

Infinite Graph, BrightstarDB etc.

Prof. S. B. Shinde

Type of NoSQL

 Graph database:

Prof. S. B. Shinde

SQL v/s NoSQL
 SQL Databases NoSQL Databases

Types One type (SQL database) with

minor variations

Many different types including

key-value stores, document

databases, wide-column stores,

and graph databases.

Development

History

Developed in 1970s to deal with

first wave of data storage

applications.

Developed in 2000s to deal with

limitations of SQL databases,

particularly concerning scale,

replication and unstructured data

storage.

Examples MySQL, Postgres, Oracle Database MongoDB, Cassandra, HBase,

Neo4j

Data

Manipulation

Specific language using Select,

Insert, and Update statements,

Through object-oriented APIs

Consistency Can be configured for strong

consistency

Depends on product. Some

provide strong consistency (e.g.,

MongoDB) whereas others offer

eventual consistency (e.g.,

Cassandra)

Prof. S. B. Shinde

SQL v/s NoSQL
 SQL Databases NoSQL Databases

Scaling Vertically, meaning a single server

must be made increasingly powerful

in order to deal with increased

demand.

Horizontally, meaning that to add

capacity, a database administrator

can simply add more commodity

servers or cloud instances.

Development

Model

Mix of open-source (e.g., Postgres,

MySQL) and closed source (e.g.,

Oracle Database)

Open-source

Supports

Transactions

Yes, updates can be configured to

complete entirely or not at all

In certain circumstances and at

certain levels (e.g., document level

vs. database level)

Data Storage

Model

Individual records are stored as rows

in tables, with each column storing

a specific piece of data about that

record much like a spreadsheet.

Varies based on database type.

Schemas Structure and data types are fixed in

advance. To store information about

a new data item, the entire database

must be altered, during which time

the database must be taken offline.

Typically dynamic. Records can

add new information on the fly,

and unlike SQL table rows,

dissimilar data can be stored

together as necessary.
Prof. S. B. Shinde

CAP Theorem (Brewer’s Theorem)

CAP Theorem states that there are three basic

requirements which exist in a special relation when

designing applications for a distributed architecture.

 Consistency:

 Availability:

 Partition tolerance:

Prof. S. B. Shinde

CAP Theorem

Consistency:

 Consistency: (all nodes see the same data at the same

time)

Consistency - the data in the database remains

consistent after the execution of an operation.

 For example after an update operation all clients see

the same data.

 Prof. S. B. Shinde

CAP Theorem

 Availability:

 Availability: (a guarantee that every request receives a

response about whether it was successful or failed)

Availability - the system is always on (service

guarantee availability), no downtime.

Prof. S. B. Shinde

CAP Theorem

 Partition Tolerance

 Partition Tolerance (the system continues to operate

despite arbitrary message loss or failure of part of the

system)

 Partition Tolerance - the system continues to function

even the communication among the servers is unreliable,

i.e. the servers may be partitioned into multiple groups

that cannot communicate with one another.

Prof. S. B. Shinde

CAP Theorem

 Theoretically it is impossible to fulfill all 3 requirements.

 A distributed system can support only 2 out of the 3

characteristics:

 CA - Single site cluster, therefore all nodes are

always in contact. When a partition occurs, the

system blocks.

 CP - Some data may not be accessible, but the

rest is still consistent/accurate.

 AP - System is still available under partitioning,

but some of the data returned may be inaccurate.

Prof. S. B. Shinde

CAP Theorem

Prof. S. B. Shinde

The BASE System

 The BASE acronym was defined by Eric Brewer, who

is also known for formulating the CAP theorem.

 The CAP theorem states that a distributed computer

system cannot guarantee all of the following three

properties at the same time:

 Consistency:

 Availability:

 Partition tolerance:

 A BASE system gives up on consistency.

Prof. S. B. Shinde

The BASE System Contd..

 Basically Available indicates that the system does guarantee

availability, in terms of the CAP theorem.

 Soft state indicates that the state of the system may change

over time, even without input. This is because of the eventual

consistency model.

 Eventual consistency indicates that the system will become

consistent over time, given that the system doesn't receive

input during that time.

ACID BASE

Atomic Basically Available

Consistency Soft state

Isolation Eventual consistency

Durable
Prof. S. B. Shinde

NoSQL pros/cons

Advantages:

 High scalability

 Dynamic Schemas

 Replication

 Auto-sharding

 Integrated Caching

 Distributed Computing

 Low Cost

 No complicated Relationships

Disadvantages:

 Maturity

 Enterprise Support

 Transaction Support

 Expertise (Highly Skilled

Programmers)

Prof. S. B. Shinde

Advantages of NoSQL
 Scalability: NoSQL database can be scaled up easily and with minimum

effort and hence it’s well suited for today’s every increasing database need

(bit data). NoSQL database have scalable architecture, so it can efficiently

manage data and can scale up to many machines instead of costly machines

that are required while scaling using of SQL DBMS.

 With dynamic schema, if we want to change the length of column, or add

new column we don’t need to change whole table data instead the new data

will be stored with the new structure without affecting the previous data

/structure. In NoSQL databases we can insertion data without a predefined

schema.

 Replication provides redundancy and increases data availability. With

multiple copies of data on different database servers, replication protects a

database from the loss of a single server.

 To use replication with sharding, deploy each shard as a replica set.

 Sharding is the process of storing data records across multiple machines and

is MongoDB’s approach to meeting the demands of data growth.

 Many NoSQL database have integrated caching mechanism, hence

frequently used data are stored in system memory as much as possible and

discarding the need for a separate caching layer.

Disadvantages of NoSQL

 Maturity – NoSQL database are new and emerging technologies. Since its

under heavy development bugs, new features, keep on arising.

 Enterprise Support – If system fails company must be able to get timely

support. In case of NoSQL, there are very few companies which know the

technology and hence can be a deciding factor before using NOSQL.

 Transaction Support – NOSQL doesn’t support SQL transaction features

and hence for financial application SQL are still one the best in industry.

 Expertise (Highly Skilled Programmers) – There are millions of people

around the world who knows RDBMS while very few people are aware of

such technology hence getting a NOSQL programmer can be difficult.

Prof. S. B. Shinde

Thank

You

