
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Unit 2:
SQL AND PL/SQL

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Outline

 SQL: Characteristics and advantages,

 SQL Data Types and Literals,

 DDL, DML, DCL, TCL,

 SQL Operators,

 Tables: Creating, Modifying, Deleting,

 Views: Creating, Dropping, Updating using Views,

 Indexes,

 SQL DML Queries: SELECT Query and clauses,

 Set Operations, Predicates and Joins, Set membership,

 Tuple Variables, Set comparison,

 Ordering of Tuples,

 Aggregate Functions,

 Nested Queries,

 Database Modification using SQL Insert, Update and Delete Queries.

 PL/SQL: concept of Stored Procedures & Functions, Cursors, Triggers,
Assertions, roles and privileges , Embedded SQL, Dynamic SQL.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Introduction to SQL

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Outline

 Overview of The SQL Query Language

 Data Definition

 Basic Query Structure

 Additional Basic Operations

 Set Operations

 Null Values

 Aggregate Functions

 Nested Subqueries

 Modification of the Database

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

History

 IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

 SQL-86

 SQL-89

 SQL-92

 SQL:1999 (language name became Y2K compliant!)

 SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

 Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Data Definition Language

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 And as we will see later, also other information such as

 The set of indices to be maintained for each relations.

 Security and authorization information for each relation.

 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the specification
of information about relations, including:

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified
maximum length n.

 int. Integer (a finite subset of the integers that is machine-dependent).

 smallint. Small integer (a machine-dependent subset of the integer
domain type).

 numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point. (ex., numeric(3,1),
allows 44.5 to be stores exactly, but not 444.5 or 0.32)

 real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at least
n digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

Create Table Construct

 An SQL relation is defined using the create table command:

create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 6th Edition

Integrity Constraints in Create Table

 not null

 primary key (A1, ..., An)

 foreign key (Am, ..., An) references r

Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

primary key declaration on an attribute automatically ensures not null

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 6th Edition

And a Few More Relation Definitions

 create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

 Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

And more still

 create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),

foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 6th Edition

Updates to tables

 Insert

 insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
 Delete

 Remove all tuples from the student relation

 delete from student

 Drop Table

 drop table r

 Alter

 alter table r add A D

 where A is the name of the attribute to be added to relation
r and D is the domain of A.

 All exiting tuples in the relation are assigned null as the
value for the new attribute.

 alter table r drop A

 where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 6th Edition

Basic Query Structure

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

 Ai represents an attribute

 Ri represents a relation

 P is a predicate.

 The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 6th Edition

The select Clause

 The select clause lists the attributes desired in the result of a query

 corresponds to the projection operation of the relational algebra

 Example: find the names of all instructors:
select name

from instructor

 NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

 E.g., Name ≡ NAME ≡ name

 Some people use upper case wherever we use bold font.

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 6th Edition

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct
after select.

 Find the department names of all instructors, and remove duplicates

select distinct dept_name

from instructor

 The keyword all specifies that duplicates should not be removed.

select all dept_name

from instructor

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 6th Edition

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”
select *
from instructor

 An attribute can be a literal with no from clause

select ‘437’
 Results is a table with one column and a single row with value “437”
 Can give the column a name using:

select ‘437’ as FOO

 An attribute can be a literal with from clause

select ‘A’
from instructor

 Result is a table with one column and N rows (number of tuples in the
instructors table), each row with value “A”

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 6th Edition

The select Clause (Cont.)

 The select clause can contain arithmetic expressions involving the
operation, +, –, , and /, and operating on constants or attributes of
tuples.

 The query:

select ID, name, salary/12

from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

 Can rename “salary/12” using the as clause:

select ID, name, salary/12 as monthly_salary

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 6th Edition

The where Clause

 The where clause specifies conditions that the result must satisfy

 Corresponds to the selection predicate of the relational algebra.

 To find all instructors in Comp. Sci. dept

select name

from instructor

where dept_name = ‘Comp. Sci.'

 Comparison results can be combined using the logical connectives
and, or, and not

 To find all instructors in Comp. Sci. dept with salary > 80000

select name

from instructor

where dept_name = ‘Comp. Sci.' and salary > 80000

 Comparisons can be applied to results of arithmetic expressions.

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 6th Edition

The from Clause

 The from clause lists the relations involved in the query

 Corresponds to the Cartesian product operation of the relational
algebra.

 Find the Cartesian product instructor X teaches

select 
from instructor, teaches

 generates every possible instructor – teaches pair, with all attributes
from both relations.

 For common attributes (e.g., ID), the attributes in the resulting table
are renamed using the relation name (e.g., instructor.ID)

 Cartesian product not very useful directly, but useful combined with
where-clause condition (selection operation in relational algebra).

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 6th Edition

Cartesian Product

instructor teaches

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 6th Edition

Examples

 Find the names of all instructors who have taught some course and the
course_id

 select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID

 Find the names of all instructors in the Art department who have taught
some course and the course_id

 select name, course_id

from instructor , teaches

where instructor.ID = teaches.ID and instructor. dept_name = ‘Art’

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 6th Edition

The Rename Operation

 The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

 Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.
 select distinct T.name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

 Keyword as is optional and may be omitted
instructor as T ≡ instructor T

©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 6th Edition

Cartesian Product Example

 Relation emp-super

 Find the supervisor of “Bob”
 Find the supervisor of the supervisor of “Bob”
 Find ALL the supervisors (direct and indirect) of “Bob

person supervisor

Bob Alice
Mary Susan
Alice David
David Mary

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 6th Edition

String Operations

 SQL includes a string-matching operator for comparisons on character
strings. The operator like uses patterns that are described using two
special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the substring
“dar”.

select name

from instructor

where name like '%dar%'

 Match the string “100%”
like ‘100 \%' escape '\'

in that above we use backslash (\) as the escape character.

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 6th Edition

String Operations (Cont.)

 Patterns are case sensitive.

 Pattern matching examples:

 ‘Intro%’ matches any string beginning with “Intro”.
 ‘%Comp%’ matches any string containing “Comp” as a substring.
 ‘_ _ _’ matches any string of exactly three characters.
 ‘_ _ _ %’ matches any string of at least three characters.

 SQL supports a variety of string operations such as

 concatenation (using “||”)
 converting from upper to lower case (and vice versa)

 finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 6th Edition

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors

select distinct name

from instructor

order by name

 We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

 Example: order by name desc

 Can sort on multiple attributes

 Example: order by dept_name, name

©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 6th Edition

Where Clause Predicates

 SQL includes a between comparison operator

 Example: Find the names of all instructors with salary between $90,000
and $100,000 (that is,  $90,000 and  $100,000)

 select name

from instructor

where salary between 90000 and 100000

 Tuple comparison

 select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 6th Edition

Duplicates

 In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

 Multiset versions of some of the relational algebra operators – given
multiset relations r1 and r2:

1.  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies

selections ,, then there are c1 copies of t1 in  (r1).

2. A (r): For each copy of tuple t1 in r1, there is a copy of tuple
A (t1) in A (r1) where A (t1) denotes the projection of the single
tuple t1.

3. r1 x r2: If there are c1 copies of tuple t1 in r1 and c2 copies of tuple
t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 6th Edition

Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C) are as
follows:

r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

{(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:

select A1,, A2, ..., An

from r1, r2, ..., rm

where P

is equivalent to the multiset version of the expression:

))((
21,,, 21 mPAAA

rrr
n

  

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 6th Edition

Set Operations

 Find courses that ran in Fall 2009 or in Spring 2010

 Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union

(select course_id from section where sem = ‘Spring’ and year = 2010)

 Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)
except

(select course_id from section where sem = ‘Spring’ and year = 2010)

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 6th Edition

Set Operations (Cont.)

 Find the salaries of all instructors that are less than the largest salary.

 select distinct T.salary

from instructor as T, instructor as S
where T.salary < S.salary

 Find all the salaries of all instructors

 select distinct salary

from instructor

 Find the largest salary of all instructors.

 (select “second query”)
except
(select “first query”)

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 6th Edition

Set Operations (Cont.)

 Set operations union, intersect, and except

 Each of the above operations automatically eliminates duplicates

 To retain all duplicates use the corresponding multiset versions union
all, intersect all and except all.

 Suppose a tuple occurs m times in r and n times in s, then, it occurs:

 m + n times in r union all s

 min(m,n) times in r intersect all s

 max(0, m – n) times in r except all s

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 6th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null, for
some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

 Example: 5 + null returns null

 The predicate is null can be used to check for null values.

 Example: Find all instructors whose salary is null.

select name

from instructor

where salary is null

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 6th Edition

Null Values and Three Valued Logic

 Three values – true, false, unknown

 Any comparison with null returns unknown

 Example: 5 < null or null <> null or null = null

 Three-valued logic using the value unknown:

 OR: (unknown or true) = true,
(unknown or false) = unknown

(unknown or unknown) = unknown

 AND: (true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 “P is unknown” evaluates to true if predicate P evaluates to
unknown

 Result of where clause predicate is treated as false if it evaluates to
unknown

©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 6th Edition

Aggregate Functions

 These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 6th Edition

Aggregate Functions (Cont.)

 Find the average salary of instructors in the Computer Science
department

 select avg (salary)
from instructor

where dept_name= ’Comp. Sci.’;
 Find the total number of instructors who teach a course in the Spring

2010 semester

 select count (distinct ID)
from teaches

where semester = ’Spring’ and year = 2010;

 Find the number of tuples in the course relation

 select count (*)
from course;

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 6th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department

 select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name;

avg_salary

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 6th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must appear
in group by list

 /* erroneous query */
select dept_name, ID, avg (salary)
from instructor

group by dept_name;

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 6th Edition

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose
average salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select dept_name, avg (salary)
from instructor

group by dept_name

having avg (salary) > 42000;

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 6th Edition

Null Values and Aggregates

 Total all salaries

select sum (salary)
from instructor

 Above statement ignores null amounts

 Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null values
on the aggregated attributes

 What if collection has only null values?

 count returns 0

 all other aggregates return null

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 6th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A subquery
is a select-from-where expression that is nested within another query.

 The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

 Ai can be replaced be a subquery that generates a single value.

 ri can be replaced by any valid subquery

 P can be replaced with an expression of the form:

B <operation> (subquery)

Where B is an attribute and <operation> to be defined later.

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 6th Edition

Subqueries in the Where Clause

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 6th Edition

Subqueries in the Where Clause

 A common use of subqueries is to perform tests:

 For set membership

 For set comparisons

 For set cardinality.

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 6th Edition

Set Membership

 Find courses offered in Fall 2009 and in Spring 2010

 Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id in (select course_id

from section

where semester = ’Spring’ and year= 2010);

select distinct course_id

from section

where semester = ’Fall’ and year= 2009 and

course_id not in (select course_id

from section

where semester = ’Spring’ and year= 2010);

©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 6th Edition

Set Membership (Cont.)

 Find the total number of (distinct) students who have taken course
sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features.

select count (distinct ID)
from takes

where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year

from teaches

where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 6th Edition

Set Comparison – “some” Clause

 Find names of instructors with salary greater than that of some (at
least one) instructor in the Biology department.

 Same query using > some clause

select name

from instructor

where salary > some (select salary

from instructor

where dept name = ’Biology’);

select distinct T.name

from instructor as T, instructor as S

where T.salary > S.salary and S.dept name = ’Biology’;

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 6th Edition

Definition of “some” Clause

 F <comp> some r t  r such that (F <comp> t)
Where <comp> can be:     

0

5

6

(5 < some) = true

0

5

0

) = false

5

0

5(5  some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some)  in

However, ( some)  not in

©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 6th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department.

select name

from instructor

where salary > all (select salary

from instructor

where dept name = ’Biology’);

©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 6th Edition

Definition of “all” Clause

 F <comp> all r t  r (F <comp> t)

0

5

6

(5 < all) = false

6
10

4

) = true

5

4

6(5  all) = true (since 5  4 and 5  6)

(5 < all

) = false(5 = all

( all)  not in

However, (= all)  in

©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 6th Edition

Test for Empty Relations

 The exists construct returns the value true if the argument
subquery is nonempty.

 exists r  r  Ø

 not exists r  r = Ø

©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 6th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course_id

from section as S
where semester = ’Fall’ and year = 2009 and

exists (select *
from section as T
where semester = ’Spring’ and year= 2010

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query

 Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 6th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the Biology
department.

select distinct S.ID, S.name

from student as S

where not exists ((select course_id

from course

where dept_name = ’Biology’)
except

(select T.course_id

from takes as T

where S.ID = T.ID));

• First nested query lists all courses offered in Biology
• Second nested query lists all courses a particular student took

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 6th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any
duplicate tuples in its result.

 The unique construct evaluates to “true” if a given subquery
contains no duplicates .

 Find all courses that were offered at most once in 2009

select T.course_id

from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2009);

©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 6th Edition

Subqueries in the Form Clause

©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 6th Edition

Subqueries in the Form Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.”

select dept_name, avg_salary

from (select dept_name, avg (salary) as avg_salary

from instructor

group by dept_name)
where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary

from (select dept_name, avg (salary)
from instructor

group by dept_name) as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 6th Edition

With Clause

 The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)

select department.name

from department, max_budget

where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 6th Edition

Complex Queries using With Clause

 Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),

dept_total_avg(value) as
(select avg(value)
from dept_total)

select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;

©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 6th Edition

Subqueries in the Select Clause

©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 6th Edition

Scalar Subquery

 Scalar subquery is one which is used where a single value is
expected

 List all departments along with the number of instructors in each
department

select dept_name,
(select count(*)

from instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

 Runtime error if subquery returns more than one result tuple

©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 6th Edition

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan3.61Database System Concepts - 6th Edition

Deletion

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department
delete from instructor

where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor

where dept name in (select dept name

from department

where building = ’Watson’);

©Silberschatz, Korth and Sudarshan3.62Database System Concepts - 6th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)

from instructor);

 Problem: as we delete tuples from deposit, the average salary
changes

 Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without

recomputing avg or retesting the tuples)

©Silberschatz, Korth and Sudarshan3.63Database System Concepts - 6th Edition

Insertion

 Add a new tuple to course

insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null

insert into student

values (’3003’, ’Green’, ’Finance’, null);

©Silberschatz, Korth and Sudarshan3.64Database System Concepts - 6th Edition

Insertion (Cont.)

 Add all instructors to the student relation with tot_creds set to 0

insert into student

select ID, name, dept_name, 0

from instructor

 The select from where statement is evaluated fully before any of its
results are inserted into the relation.

Otherwise queries like

insert into table1 select * from table1

would cause problem

©Silberschatz, Korth and Sudarshan3.65Database System Concepts - 6th Edition

Updates

 Increase salaries of instructors whose salary is over $100,000
by 3%, and all others by a 5%

 Write two update statements:

update instructor

set salary = salary * 1.03
where salary > 100000;

update instructor

set salary = salary * 1.05
where salary <= 100000;

 The order is important

 Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.66Database System Concepts - 6th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement

update instructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

©Silberschatz, Korth and Sudarshan3.67Database System Concepts - 6th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

update student S

set tot_cred = (select sum(credits)
from takes, course

where takes.course_id = course.course_id and
S.ID= takes.ID.and
takes.grade <> ’F’ and
takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

PL - Advanced SQL

©Silberschatz, Korth and Sudarshan3.69Database System Concepts - 6th Edition

Outline

 Accessing SQL From a Programming Language

 Functions and Procedural Constructs

 Triggers

 Recursive Queries

 Advanced Aggregation Features

 OLAP

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Accessing SQL From a Programming Language

©Silberschatz, Korth and Sudarshan3.71Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

 API (application-program interface) for a program to interact with a
database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 Various tools:

 JDBC (Java Database Connectivity) works with Java

 ODBC (Open Database Connectivity) works with C, C++, C#,
and Visual Basic. Other API’s such as ADO.NET sit on top of
ODBC

 Embedded SQL

©Silberschatz, Korth and Sudarshan3.72Database System Concepts - 6th Edition

JDBC

 JDBC is a Java API for communicating with database systems
supporting SQL.

 JDBC supports a variety of features for querying and updating data,
and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object
 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

©Silberschatz, Korth and Sudarshan3.73Database System Concepts - 6th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard

 standard for application program to communicate with a
database server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Silberschatz, Korth and Sudarshan3.74Database System Concepts - 6th Edition

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, C++, Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host
language comprise embedded SQL.

 The basic form of these languages follows that of the System R
embedding of SQL into PL/1.

 EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

 In some languages, like COBOL, the semicolon is replaced with
END-EXEC

 In Java embedding uses # SQL { …. };

©Silberschatz, Korth and Sudarshan3.75Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Before executing any SQL statements, the program must first connect
to the database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be
established.

 Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (:) to distinguish from
SQL variables (e.g., :credit_amount)

 Variables used as above must be declared within DECLARE section,
as illustrated below. The syntax for declaring the variables, however,
follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}

int credit-amount ;

EXEC-SQL END DECLARE SECTION;

©Silberschatz, Korth and Sudarshan3.76Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 To write an embedded SQL query, we use the

declare c cursor for <SQL query>

statement. The variable c is used to identify the query

 Example:

 From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for
select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

©Silberschatz, Korth and Sudarshan3.77Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 Example:

 From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

 Specify the query in SQL as follows:

EXEC SQL

declare c cursor for
select ID, name

from student

where tot_cred > :credit_amount

END_EXEC

 The variable c (used in the cursor declaration) is used to
identify the query

©Silberschatz, Korth and Sudarshan3.78Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 The open statement for our example is as follows:

EXEC SQL open c ;

This statement causes the database system to execute the query
and to save the results within a temporary relation. The query uses
the value of the host-language variable credit-amount at the time the
open statement is executed.

 The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

Repeated calls to fetch get successive tuples in the query result

©Silberschatz, Korth and Sudarshan3.79Database System Concepts - 6th Edition

Embedded SQL (Cont.)

 A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c ;

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

©Silberschatz, Korth and Sudarshan3.80Database System Concepts - 6th Edition

Updates Through Embedded SQL

 Embedded SQL expressions for database modification (update, insert,
and delete)

 Can update tuples fetched by cursor by declaring that the cursor is for
update

EXEC SQL

declare c cursor for
select *
from instructor

where dept_name = ‘Music’
for update

 We then iterate through the tuples by performing fetch operations on
the cursor (as illustrated earlier), and after fetching each tuple we
execute the following code:

update instructor

set salary = salary + 1000
where current of c

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Extensions to SQL

©Silberschatz, Korth and Sudarshan3.82Database System Concepts - 6th Edition

Functions and Procedures

 SQL:1999 supports functions and procedures

 Functions/procedures can be written in SQL itself, or in an external
programming language (e.g., C, Java).

 Functions written in an external languages are particularly useful
with specialized data types such as images and geometric objects.

 Example: functions to check if polygons overlap, or to compare
images for similarity.

 Some database systems support table-valued functions, which
can return a relation as a result.

 SQL:1999 also supports a rich set of imperative constructs, including

 Loops, if-then-else, assignment

 Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999.

©Silberschatz, Korth and Sudarshan3.83Database System Concepts - 6th Edition

SQL Functions

 Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;

select count (*) into d_count

from instructor

where instructor.dept_name = dept_name

return d_count;

end

 The function dept_count can be used to find the department names
and budget of all departments with more that 12 instructors.

select dept_name, budget

from department

where dept_count (dept_name) > 12

©Silberschatz, Korth and Sudarshan3.84Database System Concepts - 6th Edition

SQL functions (Cont.)

 Compound statement: begin … end
 May contain multiple SQL statements between begin and

end.

 returns -- indicates the variable-type that is returned (e.g.,
integer)

 return -- specifies the values that are to be returned as
result of invoking the function

 SQL function are in fact parameterized views that generalize
the regular notion of views by allowing parameters.

©Silberschatz, Korth and Sudarshan3.85Database System Concepts - 6th Edition

Table Functions

 SQL:2003 added functions that return a relation as a result

 Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))

returns table (

ID varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary

from instructor

where instructor.dept_name = instructor_of.dept_name)

 Usage

select *
from table (instructor_of (‘Music’))

©Silberschatz, Korth and Sudarshan3.86Database System Concepts - 6th Edition

SQL Procedures

 The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count

from instructor

where instructor.dept_name = dept_count_proc.dept_name

end

 Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc(‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

 SQL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

©Silberschatz, Korth and Sudarshan3.87Database System Concepts - 6th Edition

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

 Warning: most database systems implement their own variant of the
standard syntax below.

 Compound statement: begin … end,

 May contain multiple SQL statements between begin and end.

 Local variables can be declared within a compound statements

 While and repeat statements:

 while boolean expression do

sequence of statements ;
end while

 repeat

sequence of statements ;
until boolean expression
end repeat

©Silberschatz, Korth and Sudarshan3.88Database System Concepts - 6th Edition

Language Constructs (Cont.)

 For loop

 Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;
for r as

select budget from department

do
set n = n + r.budget

end for

©Silberschatz, Korth and Sudarshan3.89Database System Concepts - 6th Edition

Language Constructs (Cont.)

 Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

 Example procedure: registers student after ensuring classroom capacity
is not exceeded

 Returns 0 on success and -1 if capacity is exceeded

 See book (page 177) for details

 Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats

begin
…
.. signal out_of_classroom_seats

end

 The handler here is exit -- causes enclosing begin..end to be exited

 Other actions possible on exception

©Silberschatz, Korth and Sudarshan3.90Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/dept_count’

©Silberschatz, Korth and Sudarshan3.91Database System Concepts - 6th Edition

External Language Routines

 SQL:1999 allows the definition of procedures in an imperative programming
language, (Java, C#, C or C++) which can be invoked from SQL queries.

 Functions defined in this fashion can be more efficient than functions defined
in SQL, and computations that cannot be carried out in SQL can be
executed by these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/dept_count’

©Silberschatz, Korth and Sudarshan3.92Database System Concepts - 6th Edition

External Language Routines (Cont.)

 Benefits of external language functions/procedures:

 more efficient for many operations, and more expressive power.

 Drawbacks

 Code to implement function may need to be loaded into database
system and executed in the database system’s address space.
 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

 There are alternatives, which give good security at the cost of
potentially worse performance.

 Direct execution in the database system’s space is used when
efficiency is more important than security.

©Silberschatz, Korth and Sudarshan3.93Database System Concepts - 6th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:

 Use sandbox techniques

 That is, use a safe language like Java, which cannot be used
to access/damage other parts of the database code.

 Run external language functions/procedures in a separate
process, with no access to the database process’ memory.
 Parameters and results communicated via inter-process

communication

 Both have performance overheads

 Many database systems support both above approaches as well as
direct executing in database system address space.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Triggers

©Silberschatz, Korth and Sudarshan3.95Database System Concepts - 6th Edition

Triggers

 A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

 To design a trigger mechanism, we must:

 Specify the conditions under which the trigger is to be
executed.

 Specify the actions to be taken when the trigger executes.

 Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.

 Syntax illustrated here may not work exactly on your
database system; check the system manuals

©Silberschatz, Korth and Sudarshan3.96Database System Concepts - 6th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

 For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as
extra constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ‘ ‘)
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan3.97Database System Concepts - 6th Edition

Trigger to Maintain credits_earned value

 create trigger credits_earned after update of takes on (grade)
referencing new row as nrow

referencing old row as orow

for each row
when nrow.grade <> ’F’ and nrow.grade is not null

and (orow.grade = ’F’ or orow.grade is null)
begin atomic

update student

set tot_cred= tot_cred +
(select credits

from course

where course.course_id= nrow.course_id)
where student.id = nrow.id;

end;

©Silberschatz, Korth and Sudarshan3.98Database System Concepts - 6th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a transaction

 Use for each statement instead of for each row

 Use referencing old table or referencing new table to
refer to temporary tables (called transition tables) containing
the affected rows

 Can be more efficient when dealing with SQL statements that
update a large number of rows

©Silberschatz, Korth and Sudarshan3.99Database System Concepts - 6th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as
 Maintaining summary data (e.g., total salary of each

department)
 Replicating databases by recording changes to special

relations (called change or delta relations) and having a
separate process that applies the changes over to a replica

 There are better ways of doing these now:
 Databases today provide built in materialized view facilities

to maintain summary data
 Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in many
cases
 Define methods to update fields
 Carry out actions as part of the update methods instead of

through a trigger

©Silberschatz, Korth and Sudarshan3.100Database System Concepts - 6th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example, when
 Loading data from a backup copy
 Replicating updates at a remote site
 Trigger execution can be disabled before such actions.

 Other risks with triggers:
 Error leading to failure of critical transactions that set off

the trigger
 Cascading execution

