Unit 2:
SQL AND PL/SQL

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

o~ Outline

SQL: Characteristics and advantages,

SQL Data Types and Literals,

DDL, DML, DCL, TCL,

SQL Operators,

Tables: Creating, Modifying, Deleting,

Views: Creating, Dropping, Updating using Views,
Indexes,

SQL DML Queries: SELECT Query and clauses,

Set Operations, Predicates and Joins, Set membership,
Tuple Variables, Set comparison,

Ordering of Tuples,

Aggregate Functions,

Nested Queries,

Database Modification using SQL Insert, Update and Delete Queries.

PL/SQL: concept of Stored Procedures & Functions, Cursors, Triggers,
Assertions, roles and privileges , Embedded SQL, Dynamic SQL.

Database System Concepts - 6! Edition 3.2 ©Silberschatz, Korth and Sudarshan

Introduction to SQL

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Outline

Overview of The SQL Query Language
Data Definition

Basic Query Structure

Additional Basic Operations

Set Operations

Null Values

Aggregate Functions

Nested Subqueries

Modification of the Database

Database System Concepts - 6! Edition 34 ©Silberschatz, Korth and Sudarshan

s History

m IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

B Renamed Structured Query Language (SQL)
®m ANSI and ISO standard SQL:
SQL-86
SQL-89
SQL-92
SQL:1999 (language name became Y2K compliant!)
SQL:2003

m Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

Not all examples here may work on your particular system.

Database System Concepts - 6! Edition 3.5 ©Silberschatz, Korth and Sudarshan

ﬂ Data Definition Language

The SQL data-definition language (DDL) allows the specification
of information about relations, including:

The schema for each relation.

The domain of values associated with each attribute.

Integrity constraints

And as we will see later, also other information such as
The set of indices to be maintained for each relations.
Security and authorization information for each relation.
The physical storage structure of each relation on disk.

Database System Concepts - 6! Edition 3.6 ©Silberschatz, Korth and Sudarshan

Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified
maximum length n.

int. Integer (a finite subset of the integers that is machine-dependent).

smallint. Small integer (a machine-dependent subset of the integer
domain type).

numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point. (ex., numeric(3,1),
allows 44.5 to be stores exactly, but not 444.5 or 0.32)

real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at least
n digits.

More are covered in Chapter 4.

Database System Concepts - 6! Edition 3.7 ©Silberschatz, Korth and Sudarshan

..;-“ Create Table Construct

m An SQL relation is defined using the create table command:

create table r (A, D, A, D,, ..., A, D,,
(integrity-constraint,),

.(.integrity-constraintk))

ris the name of the relation

each A;is an attribute name in the schema of relation r
D; is the data type of values in the domain of attribute A;

m Example:

create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

Database System Concepts - 6! Edition 3.8 ©Silberschatz, Korth and Sudarshan

g Integrity Constraints in Create Table

= not null
® primary key (A, ..., A,)
m foreign key (A, ..., A,) references r

Example:

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department);

primary key declaration on an attribute automatically ensures not null

Database System Concepts - 6! Edition 3.9 ©Silberschatz, Korth and Sudarshan

n And a Few More Relation Definitions

—
®m create table student (
ID varchar(b),
name varchar(20) not null,
dept_ name varchar(20),
fot_cred numeric(3,0),

primary key (/ID),
foreign key (dept_name) references department),

m create table takes (

ID varchar(5),
course_id varchar(8),
sec id varchar(8),
semester varchar(6),
year numeric(4,0),

grade varchar(2),
primary key (ID, course_id, sec _id, semester, year) ,

foreign key (/D) references student,
foreign key (course _id, sec id, semester, year) references section),

Note: sec _id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the

same semester

Database System Concepts - 6! Edition 3.10 ©Silberschatz, Korth and Sudarshan

-‘ And more still

®m create table course (
course_id varchar(8),

title varchar(50),
dept_name varchar(20),
credits numeric(2,0),

primary key (course _id),
foreign key (dept_name) references department);

Database System Concepts - 6! Edition 3.11

©Silberschatz, Korth and Sudarshan

Ny Updates to tables

® Insert
insert into instructor values (‘10211°, 'Smith’, 'Biology’, 66000);
® Delete

Remove all tuples from the student relation
» delete from student
® Drop Table
drop table r
m Alter
alter table radd A D

» where A is the name of the attribute to be added to relation
r and D is the domain of A.

» All exiting tuples in the relation are assigned null as the
value for the new attribute.

alter table rdrop A

» where A is the name of an attribute of relation r
» Dropping of attributes not supported by many databases.

Database System Concepts - 6! Edition 3.12 ©Silberschatz, Korth and Sudarshan

e |
—
— =

m A typical SQL query has the form:

select A, A,, ..., A,
fromr,r, .. r,
where P

A;represents an attribute
R, represents a relation
P is a predicate.

m The result of an SQL query is a relation.

Database System Concepts - 6! Edition 3.13

Basic Query Structure

©Silberschatz, Korth and Sudarshan

— The select Clause

® The select clause lists the attributes desired in the result of a query
corresponds to the projection operation of the relational algebra

m Example: find the names of all instructors:
select name
from instructor

®m NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

E.g., Name = NAME = name

Some people use upper case wherever we use bold font.

Database System Concepts - 6! Edition 3.14 ©Silberschatz, Korth and Sudarshan

g The select Clause (Cont.)

m SQL allows duplicates in relations as well as in query results.

®m To force the elimination of duplicates, insert the keyword distinct
after select.

® Find the department names of all instructors, and remove duplicates

select distinct dept_name
from instructor

m The keyword all specifies that duplicates should not be removed.

select all dept name
from instructor

Database System Concepts - 6! Edition 3.15 ©Silberschatz, Korth and Sudarshan

g The select Clause (Cont.)

==

B An asterisk in the select clause denotes “all attributes”

select *
from instructor

®m An attribute can be a literal with no from clause
select ‘437’
Results is a table with one column and a single row with value “437”
Can give the column a name using:
select ‘437’ as FOO
® An attribute can be a literal with from clause

select ‘A’
from instructor

Result is a table with one column and N rows (number of tuples in the
instructors table), each row with value “A”

Database System Concepts - 6! Edition 3.16 ©Silberschatz, Korth and Sudarshan

g The select Clause (Cont.)

® The select clause can contain arithmetic expressions involving the
operation, +, —, *, and /, and operating on constants or attributes of
tuples.

The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation,
except that the value of the attribute salary is divided by 12.

Can rename “salary/12” using the as clause:
select /D, name, salary/12 as monthly _salary

Database System Concepts - 6! Edition 3.17 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 6! Edition 3.18 ©Silberschatz, Korth and Sudarshan

The where Clause

The where clause specifies conditions that the result must satisfy
Corresponds to the selection predicate of the relational algebra.
To find all instructors in Comp. Sci. dept

select name
from instructor
where dept name = ‘Comp. Sci.'

Comparison results can be combined using the logical connectives
and, or, and not

To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

Comparisons can be applied to results of arithmetic expressions.

s The from Clause

® The from clause lists the relations involved in the query

Corresponds to the Cartesian product operation of the relational
algebra.

® Find the Cartesian product instructor X teaches

select *
from instructor, teaches

generates every possible instructor — teaches pair, with all attributes
from both relations.

For common attributes (e.g., /D), the attributes in the resulting table
are renamed using the relation name (e.q., instructor.ID)

m Cartesian product not very useful directly, but useful combined with
where-clause condition (selection operation in relational algebra).

Database System Concepts - 6! Edition 3.19 ©Silberschatz, Korth and Sudarshan

Cartesian Product

——
instructor teaches

D T dept_name salary ID course_id | sec_id semester year
10101 | Srinivasan| Comp. Sci. | 65000 10101 | CS-101 1 Fall 2009
12121 | Wu Finance 90000 10101 | €S5-315 1 Spring | 2010
15151 | Mozart Music 40000 10101 | €5-347 ! Fall 2009
22222 | Einstein | Physics 95000 12121 | FIN-201 | 1 Spring | 2010
32343 | El Said History 60000 15151 | MU-199 1 Spring | 2010
~~~~~ ~ ~ e 29229 | PAY-101 | 1 Fall 2009

Inst.ID| name dept_name |salary | teaches.ID| course_id |sec_id| semester| year

10101 |Srinivasan{Comp. Sci| 65000 | 10101 CS-101 1 Fall 2009

10101 [Srinivasan|Comp. Sci| 65000 10101 CS-315 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000 10101 [ CS-347 1 Fall 2009

10101 [Srinivasan|Comp. Sci| 65000 12121 FIN-201 1 Spring | 2010

10101 [Srinivasan|Comp. Sci| 65000 15151 |MU-199 | 1 Spring | 2010

10101 |[Srinivasan|Comp. Sci| 65000 | 22222 PHY-101 | 1 Fall 2009

12121 |Wu Finance |90000| 10101 [CS-101 1 Fall 2009

12121 |Wu Finance |90000| 10101 [CS-315 1 Spring | 2010

12121 |Wu Pinance |90000( 10101 [CS-347 1 Fall 2009

12121 |Wu Pinance |90000| 12121 |FIN-201 | 1 Spring | 2010

12121 (Wu Finance 90000 | 15151 MU-199 1 Spring | 2010

12121 [Wu Pinance |90000| 22222 |PHY-101| 1 Fall 2009

Database System Concepts - 6! Edition 3.20 ©Silberschatz, Korth and Sudarshan



...-! Examples

® Find the names of all instructors who have taught some course and the
course_id

select name, course id
from instructor , teaches
where instructor.ID = teaches.ID

® Find the names of all instructors in the Art department who have taught
some course and the course_id

select name, course id
from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept_name = ‘Art’

Database System Concepts - 6! Edition 3.21 ©Silberschatz, Korth and Sudarshan



o The Rename Operation

®m The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

® Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci'.

select distinct 7.name
from instructor as T, instructoras S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

m Keyword as is optional and may be omitted
instructor as T = instructor T

Database System Concepts - 6! Edition 3.22 ©Silberschatz, Korth and Sudarshan



-— -A'

Cartesian Product Example

Relation emp-super

person | supervisor
Bob Alice
Mary Susan
Alice David
David | Mary

Find the supervisor of “Bob”

Find the supervisor of the supervisor of “Bob”
Find ALL the supervisors (direct and indirect) of “Bob

Database System Concepts - 6! Edition

3.23

©Silberschatz, Korth and Sudarshan



String Operations

SQL includes a string-matching operator for comparisons on character
strings. The operator like uses patterns that are described using two
special characters:

percent (% ). The % character matches any substring.
underscore (). The _ character matches any character.

Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

Match the string “100%”
like ‘100 \%' escape '\
in that above we use backslash (\) as the escape character.

Database System Concepts - 6! Edition 3.24 ©Silberschatz, Korth and Sudarshan



o String Operations (Cont.)

m Patterns are case sensitive.
B Pattern matching examples:
‘Intro%’ matches any string beginning with “Intro”.
“%Comp%’ matches any string containing “Comp” as a substring.

___matches any string of exactly three characters.

1

_ %’ matches any string of at least three characters.

B SQL supports a variety of string operations such as
concatenation (using “||")
converting from upper to lower case (and vice versa)
finding string length, extracting substrings, etc.

Database System Concepts - 6! Edition 3.25 ©Silberschatz, Korth and Sudarshan



Ordering the Display of Tuples

®m Listin alphabetic order the names of all instructors

select distinct name
from instructor
order by name

®m We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

Example: order by name desc
m Can sort on multiple attributes
Example: order by dept name, name

Database System Concepts - 6! Edition 3.26 ©Silberschatz, Korth and Sudarshan



g Where Clause Predicates

® SQL includes a between comparison operator

m Example: Find the names of all instructors with salary between $90,000
and $100,000 (that is, > $90,000 and < $100,000)

select name
from instructor
where salary between 90000 and 100000

® Tuple comparison

select name, course id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, 'Biology’);

Database System Concepts - 6! Edition 3.27 ©Silberschatz, Korth and Sudarshan



s Duplicates

® In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

® Multiset versions of some of the relational algebra operators — given
multiset relations r; and r,:

1. Gy(r): If there are ¢, copies of tuple t, in r;, and t; satisfies

selections Gy, then there are ¢, copies of t, in G y»(ry).

2. II,(r): For each copy of tuple t, in r;, there is a copy of tuple
I1,4 (%) InI14(ry) where I1, (f;) denotes the projection of the single
tuple t,.

3. r; X r,: If there are ¢, copies of tuple ¢, in r, and ¢, copies of tuple
t, in r,, there are ¢, X ¢, copies of the tuple t,. t,inr, Xr,

Database System Concepts - 6! Edition 3.28 ©Silberschatz, Korth and Sudarshan



- Duplicates (Cont.)

m Example: Suppose multiset relations r; (A, B) and r, (C) are as
follows:

n={1, a) 2.a)} r,={2), 3), 3)}

®m Then Ilg(r;) would be {(a), (a)}, while I1g(r;) x r, would be
{(@2), (a2), (a,3), (a,3), (a,3), (a,3)}

® SQL duplicate semantics:

select A, A,, ..., A,
fromr,r, .., r,
where P

IS equivalent to the multiset version of the expression:

HA1,A2,...,A,7(GP(r1 XTIy X... X rm))

Database System Concepts - 6! Edition 3.29 ©Silberschatz, Korth and Sudarshan



Set Operations

® Find courses that ran in Fall 2009 or in Spring 2010

(select course _id from section where sem = ‘Fall’ and year = 2009)
union

(select course id from section where sem = ‘Spring’ and year = 2010)
®m Find courses that ran in Fall 2009 and in Spring 2010

(select course _id from section where sem = ‘Fall’ and year = 2009)
intersect

(select course id from section where sem = ‘Spring’ and year = 2010)

B Find courses that ran in Fall 2009 but not in Spring 2010

(select course id from section where sem = ‘Fall’ and year = 2009)
except

(select course id from section where sem = ‘Spring’ and year = 2010)

Database System Concepts - 6! Edition 3.30 ©Silberschatz, Korth and Sudarshan



ﬂ Set Operations (Cont.)

==

® Find the salaries of all instructors that are less than the largest salary.

select distinct T.salary
from instructor as T, instructor as S
where T.salary < S.salary

® Find all the salaries of all instructors

select distinct salary
from instructor

® Find the largest salary of all instructors.

(select “second query” )
except
(select “first query”)

Database System Concepts - 6! Edition 3.31 ©Silberschatz, Korth and Sudarshan



ﬂ Set Operations (Cont.)

®m Set operations union, intersect, and except
Each of the above operations automatically eliminates duplicates
®m To retain all duplicates use the corresponding multiset versions union
all, intersect all and except all.
® Suppose a tuple occurs mtimes in rand ntimes in s, then, it occurs:
m + ntimes in runion all s
min(m,n) times in rintersect all s
max(0, m— n) times in rexcept all s

Database System Concepts - 6! Edition 3.32 ©Silberschatz, Korth and Sudarshan



- Null Values

®m |[tis possible for tuples to have a null value, denoted by null, for
some of their attributes

B null signifies an unknown value or that a value does not exist.

® The result of any arithmetic expression involving null'is null
Example: 5 + null returns null

® The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

Database System Concepts - 6! Edition 3.33 ©Silberschatz, Korth and Sudarshan



== Null Values and Three Valued Logic

® Three values - true, false, unknown
®  Any comparison with null returns unknown

Example: 5 < null or null <>null or null =null
® Three-valued logic using the value unknown:

OR: (unknown or tfrue) = ftrue,
(unknown or false) = unknown
(unknown or unknown) = unknown

AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

NOT: (nhot unknown) = unknown

“P is unknown” evaluates to true if predicate P evaluates to
unknown

m Result of where clause predicate is treated as false if it evaluates to
unknown

Database System Concepts - 6! Edition 3.34 ©Silberschatz, Korth and Sudarshan



-—m

= —
X

Aggregate Functions

4
i

®m These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

Database System Concepts - 6! Edition 3.35 ©Silberschatz, Korth and Sudarshan



Database System Concepts - 6! Edition 3.36 ©Silberschatz, Korth and Sudarshan

Aggregate Functions (Cont.)

Find the average salary of instructors in the Computer Science
department

select avg (salary)
from instructor
where dept_name="'Comp. Sci.’;

Find the total number of instructors who teach a course in the Spring
2010 semester

select count (distinct /D)
from teaches
where semester = 'Spring’ and year = 2010;

Find the number of tuples in the course relation

select count (*)
from course;



i §
2 _!Aw_

Aggregate Functions — Group By

® Find the average salary of instructors in each department

select dept_name, avg (salary) as avg_salary
from instructor

group by dept name;

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

Database System Concepts - 6! Edition

3.37

dep I name avg_Salgry
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

©Silberschatz, Korth and Sudarshan



Aggregation (Cont.)

—
=

-;,
— e |

m Attributes in select clause outside of aggregate functions must appear
in group by list

[* erroneous query */

select dept name, ID, avg (salary)
from instructor

group by dept name;

Database System Concepts - 6! Edition 3.38 ©Silberschatz, Korth and Sudarshan



Aggregate Functions — Having Clause

® Find the names and average salaries of all departments whose
average salary is greater than 42000

select dept_name, avg (salary)
from instructor

group by dept _name

having avg (salary) > 42000;

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

Database System Concepts - 6! Edition 3.39 ©Silberschatz, Korth and Sudarshan



Null Values and Aggregates

m Total all salaries

select sum (salary)
from instructor

Above statement ignores null amounts
Result is nullif there is no non-null amount

m All aggregate operations except count(*) ignore tuples with null values
on the aggregated attributes

® What if collection has only null values?
count returns 0
all other aggregates return null

Database System Concepts - 6! Edition 3.40 ©Silberschatz, Korth and Sudarshan



- Nested Subqueries

® SQL provides a mechanism for the nesting of subqueries. A subquery
is a select-from-where expression that is nested within another query.

B The nesting can be done in the following SQL query

select A, A,, ..., A,
fromr,r, .. r,
where P

as follows:
A; can be replaced be a subquery that generates a single value.
r; can be replaced by any valid subquery
P can be replaced with an expression of the form:
B <operation> (subquery)
Where Bis an attribute and <operation> to be defined later.

Database System Concepts - 6! Edition 3.41 ©Silberschatz, Korth and Sudarshan



Subqueries in the Where Clause

Database System Concepts - 6! Edition 3.42 ©Silberschatz, Korth and Sudarshan



Subqueries in the Where Clause

® A common use of subqueries is to perform tests:
For set membership
For set comparisons
For set cardinality.

Database System Concepts - 6! Edition 3.43 ©Silberschatz, Korth and Sudarshan



ﬂ Set Membership

==

® Find courses offered in Fall 2009 and in Spring 2010

select distinct course id
from section
where semester = 'Fall’ and year= 2009 and
course_idin (select course _id
from section
where semester = 'Spring’ and year= 2010);

® Find courses offered in Fall 2009 but not in Spring 2010

select distinct course id
from section
where semester = 'Fall’ and year= 2009 and
course_id not in (select course id
from section
where semester = 'Spring’ and year= 2010);

Database System Concepts - 6! Edition 3.44 ©Silberschatz, Korth and Sudarshan



ﬂ Set Membership (Cont.)

® Find the total number of (distinct) students who have taken course
sections taught by the instructor with /D 10101

select count (distinct /D)

from takes

where (course id, sec id, semester, year) in
(select course id, sec id, semester, year
from teaches
where teaches./D= 10101);

® Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features.

Database System Concepts - 6! Edition 3.45 ©Silberschatz, Korth and Sudarshan



Set Comparison - “some” Clause

® Find names of instructors with salary greater than that of some (at
least one) instructor in the Biology department.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology’;

B Same gquery using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology’);

Database System Concepts - 6! Edition 3.46 ©Silberschatz, Korth and Sudarshan



Definition of “some” Clause

®m F <comp>some r< 3t e r suchthat (F <comp>t)
Where <comp> can be: <, <, >, = #

0
(5<some | §5 | )=true
(read: 5 < some tuple in the relation)
6
0
(5<some | 5 | )=false
0
(5=some| § | )=true
0
(5% some | 5 | ) =true (since 0 # 5)

(= some) =in
However, (= some) 7é not in

Database System Concepts - 6! Edition 3.47 ©Silberschatz, Korth and Sudarshan



..\..gﬂ Set Comparison — “all” Clause

® Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary
from instructor
where dept name = 'Biology’);

Database System Concepts - 6! Edition 3.48 ©Silberschatz, Korth and Sudarshan



e |
—
— =

Definition of “all” Clause

B F<comp>allre Viter (F<comp>t)

0
G<all | 5§
6
6
G<all [10
4
(5=all| 5
4
G#all| 6

(= all) =notin

) = false
) = true
) = false

) = true (since 5 # 4 and 5 # 6)

However, (= all) £ in

Database System Concepts - 6! Edition

3.49

©Silberschatz, Korth and Sudarshan



Test for Empty Relations

® The exists construct returns the value true if the argument
subquery is nonempty.

exists re r2 0
notexists ro r=0

Database System Concepts - 6! Edition 3.50 ©Silberschatz, Korth and Sudarshan



e Use of “exists” Clause

®m Yet another way of specifying the query “Find all courses taught in
both the Fall 2009 semester and in the Spring 2010 semester”

select course id
from sectionas S
where semester = 'Fall’ and year = 2009 and
exists (select *
from sectionas T
where semester = 'Spring’ and year= 2010
and S.course _id = T.course _id);

m Correlation name — variable S in the outer query
m Correlated subquery — the inner query

Database System Concepts - 6! Edition 3.51 ©Silberschatz, Korth and Sudarshan



S Use of “not exists” Clause

®m Find all students who have taken all courses offered in the Biology
department.

select distinct S./D, S.name
from studentas S
where not exists ( (select course id
from course
where dept_name = 'Biology’)
except
(select T.course id
from takesas T
where S.ID = T.ID));

» First nested query lists all courses offered in Biology
« Second nested query lists all courses a particular student took

B Notethat X—Y=0 < XcY
m  Note: Cannot write this query using = all and its variants
©Silberschatz, Korth and Sudarshan

Database System Concepts - 6! Edition 3.52



!‘.!: Test for Absence of Duplicate Tuples

® The unique construct tests whether a subquery has any
duplicate tuples in its result.

® The unique construct evaluates to “true” if a given subquery
contains no duplicates .

®m Find all courses that were offered at most once in 2009

select T.course id
from courseas T
where unique (select R.course id
from sectionas R
where T.course id= R.course id
and R.year = 2009);

Database System Concepts - 6! Edition 3.53 ©Silberschatz, Korth and Sudarshan



Subqueries in the Form Clause

Database System Concepts - 6! Edition 3.54 ©Silberschatz, Korth and Sudarshan



..;-“ Subqueries in the Form Clause

==

m SQL allows a subguery expression to be used in the from clause

® Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.”

select dept _name, avg _salary

from (select dept_name, avg (salary) as avg _salary
from instructor
group by dept _name)

where avg_salary > 42000;

® Note that we do not need to use the having clause
®  Another way to write above query

select dept _name, avg _salary
from (select dept_name, avg (salary)
from instructor
group by dept name) as dept_avg (dept_name, avg_salary)

where avg salary > 42000;

Database System Concepts - 6! Edition 3.55 ©Silberschatz, Korth and Sudarshan



— - With Clause

® The with clause provides a way of defining a temporary relation

whose definition is available only to the query in which the with
clause occurs.

B Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select department.name
from department, max_budget
where department.budget = max_budget.value;

Database System Concepts - 6! Edition 3.56 ©Silberschatz, Korth and Sudarshan



=~ Complex Queries using With Clause

-
==

® Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept name),
dept total avg(value) as
(select avg(value)
from dept total)
select dept_name
from dept total, dept total avg
where dept total.value > dept total _avg.value;

Database System Concepts - 6! Edition 3.57 ©Silberschatz, Korth and Sudarshan



Subqueries in the Select Clause

Database System Concepts - 6! Edition 3.58 ©Silberschatz, Korth and Sudarshan



— - Scalar Subquery

B Scalar subguery is one which is used where a single value is
expected

m List all departments along with the number of instructors in each
department

select dept_name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department,

® Runtime error if subgquery returns more than one result tuple

Database System Concepts - 6! Edition 3.59 ©Silberschatz, Korth and Sudarshan



Modification of the Database

m Deletion of tuples from a given relation.
®m [nsertion of new tuples into a given relation
m Updating of values in some tuples in a given relation

Database System Concepts - 6! Edition 3.60 ©Silberschatz, Korth and Sudarshan



-! Deletion

m Delete all instructors
delete from instructor

m Delete all instructors from the Finance department
delete from instructor
where dept _name= 'Finance’;

®m Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept name in (select dept name
from department
where building = "Watson’);

Database System Concepts - 6! Edition 3.61 ©Silberschatz, Korth and Sudarshan



s Deletion (Cont.)

m Delete all instructors whose salary is less than the average salary of
Instructors

delete from instructor
where salary < (select avg (salary)
from instructor);

Problem: as we delete tuples from deposit, the average salary
changes

Solution used in SQL.:
1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without
recomputing avg or retesting the tuples)

Database System Concepts - 6! Edition 3.62 ©Silberschatz, Korth and Sudarshan



— Insertion

® Add a new tuple to course

insert into course
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

B or equivalently

insert into course (course_id, title, dept_name, credits)
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

® Add a new tuple to student with tot creds set to null

insert into student
values ('3003’, 'Green’, 'Finance’, null);

Database System Concepts - 6! Edition 3.63 ©Silberschatz, Korth and Sudarshan



g Insertion (Cont.)

==

® Add all instructors to the student relation with tot_creds setto 0

insert into student
select /D, name, dept_name, 0
from instructor

B The select from where statement is evaluated fully before any of its
results are inserted into the relation.

Otherwise queries like
insert into fablel select * from fablel
would cause problem

Database System Concepts - 6! Edition 3.64 ©Silberschatz, Korth and Sudarshan



i Updates

B [Increase salaries of instructors whose salary is over $100,000
by 3%, and all others by a 5%

Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

The order is important
Can be done better using the case statement (next slide)

Database System Concepts - 6! Edition 3.65 ©Silberschatz, Korth and Sudarshan



Case Statement for Conditional Updates

m Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

Database System Concepts - 6! Edition 3.66 ©Silberschatz, Korth and Sudarshan



— Updates with Scalar Subqueries

® Recompute and update tot_creds value for all students

update student S
set tot cred = (select sum(credits)
from takes, course
where takes.course id = course.course id and
S.ID= takes.ID.and
takes.grade <> 'F’ and
takes.grade is not null);

m Sets tot _creds to null for students who have not taken any course
®m [Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

Database System Concepts - 6! Edition 3.67 ©Silberschatz, Korth and Sudarshan



PL - Advanced SQL

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use




Outline

Accessing SQL From a Programming Language
Functions and Procedural Constructs

Triggers

Recursive Queries

Advanced Aggregation Features

OLAP

Database System Concepts - 6! Edition 3.69 ©Silberschatz, Korth and Sudarshan



Accessing SQL From a Programming Language

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use




mg- Accessing SQL From a Programming Language

m  API (application-program interface) for a program to interact with a
database server

m  Application makes calls to

Connect with the database server

Send SQL commands to the database server

Fetch tuples of result one-by-one into program variables
® Various tools:

JDBC (Java Database Connectivity) works with Java

ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic. Other API's such as ADO.NET sit on top of
ODBC

Embedded SQL

Database System Concepts - 6! Edition 3.711 ©Silberschatz, Korth and Sudarshan



.- JDBC

m JDBC is a Java API for communicating with database systems
supporting SQL.

m JDBC supports a variety of features for querying and updating data,
and for retrieving query results.

m JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation attributes.

® Model for communicating with the database:
Open a connection
Create a “statement” object

Execute queries using the Statement object to send gueries and
fetch results

Exception mechanism to handle errors

Database System Concepts - 6! Edition 3.72 ©Silberschatz, Korth and Sudarshan



.- ODBC

® Open DataBase Connectivity (ODBC) standard

standard for application program to communicate with a
database server.

application program interface (API) to
» open a connection with a database,
» send queries and updates,
» get back results.
m  Applications such as GUI, spreadsheets, etc. can use ODBC

Database System Concepts - 6! Edition 3.73 ©Silberschatz, Korth and Sudarshan



. Embedded SQL

m The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, C++, Java, Fortran, and PL/1,

® A language to which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host
language comprise embedded SQL.

® The basic form of these languages follows that of the System R
embedding of SQL into PL/1.

m EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement >;
Note: this varies by language:

In some languages, like COBOL, the semicolon is replaced with
END-EXEC

In Java embedding uses #SQL{.... };

Database System Concepts - 6! Edition 3.74 ©Silberschatz, Korth and Sudarshan



E Embedded SQL (Cont.)

m Before executing any SQL statements, the program must first connect
to the database. This is done using:

EXEC-SQL connect to server user user-name using password,

Here, server identifies the server to which a connection is to be
established.

®m Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (:) to distinguish from
SQL variables (e.g., :credit_amount )

® Variables used as above must be declared within DECLARE section,
as illustrated below. The syntax for declaring the variables, however,
follows the usual host language syntax.

EXEC-SQL BEGIN DECLARE SECTION}
int credit-amount ;
EXEC-SQL END DECLARE SECTION;

Database System Concepts - 6! Edition 3.75 ©Silberschatz, Korth and Sudarshan



Embedded SQL (Cont.)

® To write an embedded SQL query, we use the
declare c cursor for <SQL query>
statement. The variable ¢ is used to identify the query

m Example:

From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

Specify the query in SQL as follows:
EXEC SQL

declare c cursor for

select /D, name

from student

where tot_cred > :credit amount

END_EXEC

Database System Concepts - 6! Edition 3.76 ©Silberschatz, Korth and Sudarshan



Embedded SQL (Cont.)

Example:

From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

Specify the query in SQL as follows:
EXEC SQL

declare c cursor for

select /D, name

from student

where tot_cred > .credit amount

END_EXEC

The variable ¢ (used in the cursor declaration) is used to
identify the query

Database System Concepts - 6! Edition 3.77 ©Silberschatz, Korth and Sudarshan



g Embedded SQL (Cont.)

® The open statement for our example is as follows:
EXEC SQL open c;

This statement causes the database system to execute the query
and to save the results within a temporary relation. The query uses
the value of the host-language variable credit-amount at the time the
open statement is executed.

®m The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch cinto :si, :snEND _EXEC

Repeated calls to fetch get successive tuples in the query result

Database System Concepts - 6! Edition 3.78 ©Silberschatz, Korth and Sudarshan



g Embedded SQL (Cont.)

® A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

® The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c;

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

Database System Concepts - 6! Edition 3.79 ©Silberschatz, Korth and Sudarshan



Updates Through Embedded SQL

®m Embedded SQL expressions for database maodification (update, insert,
and delete)

m Can update tuples fetched by cursor by declaring that the cursor is for
update

EXEC SQL

declare c cursor for

select *

from instructor

where dept_name = ‘Music’
for update

® We then iterate through the tuples by performing fetch operations on
the cursor (as illustrated earlier), and after fetching each tuple we
execute the following code:

update instructor
set salary = salary + 1000
where current of ¢

Database System Concepts - 6! Edition 3.80 ©Silberschatz, Korth and Sudarshan



Extensions to SQL

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use




s Functions and Procedures

m SQL:1999 supports functions and procedures

Functions/procedures can be written in SQL itself, or in an external
programming language (e.g., C, Java).

Functions written in an external languages are particularly useful
with specialized data types such as images and geometric objects.

» Example: functions to check if polygons overlap, or to compare
iImages for similarity.

Some database systems support table-valued functions, which
can return a relation as a result.

m SQL:1999 also supports a rich set of imperative constructs, including
Loops, if-then-else, assignment

® Many databases have proprietary procedural extensions to SQL that
differ from SQL:1999.

Database System Concepts - 6! Edition 3.82 ©Silberschatz, Korth and Sudarshan



o SQL Functions

m Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept count (dept_name varchar(20))
returns integer
begin
declare d count integer;
select count (*) into d _count
from instructor
where instructor.dept_name = dept_name
return d _count;
end

® The function dept _count can be used to find the department names
and budget of all departments with more that 12 instructors.

select dept_name, budget
from department
where dept count (dept name) > 12

Database System Concepts - 6! Edition 3.83 ©Silberschatz, Korth and Sudarshan



r SQL functions (Cont.)

m Compound statement: begin ... end

May contain multiple SQL statements between begin and
end.

® returns --indicates the variable-type that is returned (e.qg.,
integer)

B return -- specifies the values that are to be returned as
result of invoking the function

m SQL function are in fact parameterized views that generalize
the regular notion of views by allowing parameters.

Database System Concepts - 6! Edition 3.84 ©Silberschatz, Korth and Sudarshan



Ny Table Functions

B SQL:2003 added functions that return a relation as a result
m Example: Return all instructors in a given department
create function instructor_of (dept_name char(20))
returns table (

ID varchar(b),

name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept _name)

m Usage

select *
from table (instructor_of (‘Music’))

Database System Concepts - 6! Edition 3.85 ©Silberschatz, Korth and Sudarshan



SQL Procedures

The dept_count function could instead be written as procedure:

create procedure dept count proc (in dept_name varchar(20),
out d count integer)
begin

select count(”) into d count
from instructor
where instructor.dept_name = dept_count proc.dept_name

end

Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d _count integer;
call dept _count proc( ‘Physics’, d_count);

Procedures and functions can be invoked also from dynamic SQL

SQL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

Database System Concepts - 6! Edition 3.86 ©Silberschatz, Korth and Sudarshan



..;{._l Language Constructs for Procedures & Functions

4
.

m SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

Warning: most database systems implement their own variant of the
standard syntax below.

B Compound statement: begin ... end,
May contain multiple SQL statements between begin and end.
Local variables can be declared within a compound statements
® While and repeat statements:

while boolean expression do
sequence of statements ;
end while

repeat
sequence of statements ;
until boolean expression
end repeat

Database System Concepts - 6! Edition 3.87 ©Silberschatz, Korth and Sudarshan



-—m

——
=

Language Constructs (Cont.)

4
i

® For loop
Permits iteration over all results of a query

m Example: Find the budget of all departments

declare n integer default O;
for r as
select budget from department
do
set n= n+ r.budget
end for

Database System Concepts - 6! Edition 3.88 ©Silberschatz, Korth and Sudarshan



i Language Constructs (Cont.)

m Conditional statements (if-then-else)
SQL:1999 also supports a case statement similar to C case statement

m Example procedure: registers student after ensuring classroom capacity
IS not exceeded

Returns 0 on success and -1 if capacity is exceeded
See book (page 177) for details
m Signaling of exception conditions, and declaring handlers for exceptions

declare out of classroom seats condition
declare exit handler for out of classroom seats
begin

.. signal out of classroom seats
end

The handler here is exit -- causes enclosing begin..end to be exited
Other actions possible on exception

Database System Concepts - 6! Edition 3.89 ©Silberschatz, Korth and Sudarshan



— - External Language Routines

m SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

m Declaring external language procedures and functions

create procedure dept _count_proc(in dept_name varchar(20),
out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer

language C

external name ‘/usr/avi/bin/dept_count’

Database System Concepts - 6! Edition 3.90 ©Silberschatz, Korth and Sudarshan



i External Language Routines

m SQL:1999 allows the definition of procedures in an imperative programming
language, (Java, C#, C or C++) which can be invoked from SQL queries.

®m Functions defined in this fashion can be more efficient than functions defined
In SQL, and computations that cannot be carried out in SQL can be
executed by these functions.

m Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C

external name ’ /usr/avi/bin/dept_count_proc’

create function dept_count(dept_name varchar(20))
returns integer

language C

external name ‘/usr/avi/bin/dept_count’

Database System Concepts - 6! Edition 3.91 ©Silberschatz, Korth and Sudarshan



-— ,"

—

==

5 External Language Routines (Cont.)
®m Benefits of external language functions/procedures:

more efficient for many operations, and more expressive power.
m Drawbacks

Code to implement function may need to be loaded into database
system and executed in the database system’s address space.

» risk of accidental corruption of database structures
» security risk, allowing users access to unauthorized data

There are alternatives, which give good security at the cost of
potentially worse performance.

Direct execution in the database system’s space is used when
efficiency is more important than security.

Database System Concepts - 6! Edition 3.92 ©Silberschatz, Korth and Sudarshan



-— ,"

=g Security with External Language Routines

e

® To deal with security problems, we can do on of the following:
Use sandbox techniques

» That is, use a safe language like Java, which cannot be used
to access/damage other parts of the database code.

Run external language functions/procedures in a separate
process, with no access to the database process’ memory.

» Parameters and results communicated via inter-process
communication

® Both have performance overheads

B Many database systems support both above approaches as well as
direct executing in database system address space.

Database System Concepts - 6! Edition 3.93 ©Silberschatz, Korth and Sudarshan



Triggers

Database System Concepts, 6" Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use




- Triggers

m A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

B To design a trigger mechanism, we must:

Specify the conditions under which the trigger is to be
executed.

Specify the actions to be taken when the trigger executes.

®m Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.

Syntax illustrated here may not work exactly on your
database system; check the system manuals

Database System Concepts - 6! Edition 3.95 ©Silberschatz, Korth and Sudarshan



=a Iriggering Events and Actions in SQL

®m Triggering event can be insert, delete or update

®m Triggers on update can be restricted to specific attributes
For example, after update of takes on grade

m Values of attributes before and after an update can be referenced
referencing old row as : for deletes and updates
referencing new row as : for inserts and updates

®m Triggers can be activated before an event, which can serve as
extra constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = “ *)
begin atomic
set nrow.grade = null;
end;

Database System Concepts - 6! Edition 3.96 ©Silberschatz, Korth and Sudarshan



Trigger to Maintain credits_earned value

-

m create trigger credits _earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F’ and nrow.grade is not null
and (orow.grade ='F’ or orow.grade is null)
begin atomic
update student
set fot cred= tot cred +
(select credits
from course
where course.course _id= nrow.course_id)
where student.id = nrow.id,
end;

Database System Concepts - 6! Edition 3.97 ©Silberschatz, Korth and Sudarshan



ﬂ Statement Level Triggers

==

®m [nstead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a transaction

Use for each statement instead of for each row

Use referencing old table or referencing new table to
refer to temporary tables (called transition tables) containing
the affected rows

Can be more efficient when dealing with SQL statements that
update a large number of rows

Database System Concepts - 6! Edition 3.98 ©Silberschatz, Korth and Sudarshan



ﬂ When Not To Use Triggers

®m Triggers were used earlier for tasks such as

Maintaining summary data (e.g., total salary of each
department)

Replicating databases by recording changes to special
relations (called change or delta relations) and having a
separate process that applies the changes over to a replica

B There are better ways of doing these now:

Databases today provide built in materialized view facilities
to maintain summary data

Databases provide built-in support for replication

® Encapsulation facilities can be used instead of triggers in many
cases

Define methods to update fields

Carry out actions as part of the update methods instead of
through a trigger

Database System Concepts - 6! Edition 3.99 ©Silberschatz, Korth and Sudarshan



.;-‘ When Not To Use Triggers (Cont.)

—

y
-
N |

B Risk of unintended execution of triggers, for example, when
Loading data from a backup copy
Replicating updates at a remote site
Trigger execution can be disabled before such actions.
m Other risks with triggers:

Error leading to failure of critical transactions that set off
the trigger

Cascading execution

Database System Concepts - 6! Edition 3.100 ©Silberschatz, Korth and Sudarshan



