
UNIT IVUNIT IV

Database Transaction Database Transaction
ManagementManagement

Introduction- Transaction
Collections of operations that form a single logical

unit of work are called transactions.
 OR
A transaction is a unit of program execution that

accesses and possibly updates various data items.
At the end of transaction database must be in

consistence state.
A transaction is delimited by statements (or function

calls) of the form begin transaction and end
transaction.

The transaction consists of all operations executed
between the begin transaction and end transaction.

Introduction- Transaction
Two main issues to deal with:
 Failures of various kinds, such as hardware failures and

system crashes
 Concurrent execution of multiple transactions

Transactions access data using two operations:
 read(X), which transfers the data item X from the database

to a variable, also called X, in a buffer in main memory
belonging to the transaction that executed the read operation.

 write(X), which transfers the value in the variable X in the
main-memory buffer of the transaction that executed the
write to the data item X in the database.

ACID Properties
To preserve integrity of data, the database system must ensure:
Atomicity: Either all operations of the transaction are properly

reflected in the database or none are.
Consistency: Execution of a transaction in isolation preserves

the consistency of the database.
Isolation: Although multiple transactions may execute

concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate transaction
results must be hidden from other concurrently executed
transactions.

 That is, for every pair of transactions Ti and Tj, it appears to Ti that
either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

Durability: After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

Example of Fund Transfer
Transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

Consistency requirement – the sum of A and B is unchanged
by the execution of the transaction.

Atomicity requirement — if the transaction fails after step 3
and before step 6, the system should ensure that its updates are
not reflected in the database, else an inconsistency will result.

Example of Fund Transfer
Durability requirement — once the user has been

notified that the transaction has completed (i.e., the
transfer of the $50 has taken place), the updates to the
database by the transaction must persist despite failures.

Isolation requirement — if between steps 3 and 6,
another transaction is allowed to access the partially
updated database, it will see an inconsistent database
(the sum A + B will be less than it should be).
Can be ensured trivially by running transactions serially,
that is one after the other. However, executing multiple
transactions concurrently has significant benefits, as we
will see.

Transaction State

Transaction State (Contd…)

Active- the initial state; the transaction stays in this state
while it is executing.

Partially committed- after the final statement has been
executed.

Failed- after the discovery that normal execution can no
longer proceed.

Aborted- after the transaction has been rolled back and
the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:

 restart the transaction – only if transaction aborted due to
h/w or s/w error.

 kill the transaction – logical error
Committed- after successful completion.

Concurrent Executions
Multiple transactions are allowed to run concurrently in

the system.
Advantages are:

 Increased processor and disk utilization, leading to better transaction
throughput: one transaction can be using the CPU while another is
reading from or writing to the disk.

Throughput- The number of transactions executed in a given amount of
time.

 Reduced average response time for transactions: short transactions
need not wait behind long ones.

Response time- The average time for a transaction to be completed after
it has been submitted.

Concurrency control schemes – mechanisms to achieve
isolation, i.e., to control the interaction among the
concurrent transactions in order to prevent them from
destroying the consistency of the database.

Schedules
Schedule – a sequences of instructions that specify the

chronological order in which instructions of concurrent
transactions are executed

 a schedule for a set of transactions must consist of all
instructions of those transactions

 must preserve the order in which the instructions appear in
each individual transaction.

A transaction that successfully completes its execution
will have a commit instructions as the last statement.

 by default transaction assumed to execute commit instruction
as its last step

A transaction that fails to successfully complete its
execution will have an abort instruction as the last
statement.

Types of Schedules
 Serial Schedule – It consist of a sequence of instructions

from various transactions, where the instructions
belonging to one single transaction appear together in
that schedule.

 Concurrent Schedule - If the operating system is
executing one transaction for a little while, then perform
a context switch, execute the second transaction for
some time, and then switch back to the first transaction
for some time, and so on.

Example: Schedules-1
Let T1 transfer $50 from A to B, and T2 transfer 10% of

the balance from A to B. Initially A = 1000 and B = 2000
A Serial schedule in which T1 is followed by T2 :

Example: Schedules-2
A Serial schedule in which T2 is followed by T1 :

Example: Schedules-3
Let T1 and T2 be the transactions defined previously.
The following schedule is a concurrent schedule.

Example: Schedules-4

Concurrent Executions Contd…

If control of concurrent execution is left entirely to the
operating system, many possible schedules, including
ones that leave the database in an inconsistent state, such
as the one just described, are possible.

It is the job of the database system to ensure that any
schedule that is executed will leave the database in a
consistent state.

The concurrency-control component of the database
system carries out this task.

The method used to check consistency of database is
called serializability.

Serializability
Serializability is a method to find wheather the given

schedule is serializable or not.

All serializable schedules preserves database consistency.

Serial execution of a set of transactions preserves
database consistency, so all serial schedules are
serializable.

Not all concurrent schedule is serializable, but it can be
serializable if it is equivalent to a serial schedule.

 Conflict serializability

 View serializability

Conflict Serializability
Consider a schedule S in which there are two consecutive

instructions Li and Lj of transactions Ti and Tj
respectively

 If Li and Lj refer to different data items, that are non
conflict instructions and if we can swap such instructions
without affecting result.

 Instructions conflict if and only if there exists same data
item Q accessed by both Li and Lj.

• Li = read(Q), Lj = read(Q). Li and Lj don’t conflict.
• Li = read(Q), Lj = write(Q). They conflict.
• Li = write(Q), Lj = read(Q). They conflict
• Li = write(Q), Lj = write(Q). They conflict

Conflict Serializability

Schedule 5

Conflict Serializability (Contd…)

If a schedule S can be transformed into a schedule S´ by a
series of swaps of non conflicting instructions, we say
that S and S´ are conflict equivalent.

We say that a schedule S is conflict serializable if it is
conflict equivalent to a serial schedule.

Conflict Serializability (Contd…)

Therefore schedule 3 is conflict serializable, since it is
conflict equivalent to the serial schedule 1.

Conflict Serializability (Contd…)

Example of a schedule-7

We are unable to swap instructions in the above schedule
to obtain either the serial schedule < T3, T4>, or the serial
schedule < T4, T3>.

Schedule is not conflict serializable

View Serializability
Let S and S´ be two schedules with the same set of

transactions. S and S´ are view equivalent if the
following three conditions are met, for each data item Q:

 If in schedule S, transaction Ti reads the initial value of Q, then in
schedule S’ also transaction Ti must read the initial value of Q.

 If in schedule S transaction Ti executes read(Q), and that value was
produced by transaction Tj (if any), then in schedule S’ also
transaction Ti must read the value of Q that was produced by the
same write(Q) operation of transaction Tj.

 The transaction (if any) that performs the final write(Q) operation in
schedule S must also perform the final write(Q) operation in
schedule S’.

View Serializability

A schedule S is view serializable if it is view equivalent to a
serial schedule.

View Serializability

View Serializability

Transactions T4 and T6 perform write(Q) operations
without having performed a read(Q) operation.

Writes of this sort are called blind writes.

Blind writes appear in any view-serializable schedule that
is not conflict serializable.

Non Recoverable Schedule

The above schedule is not recoverable if T9 commits
immediately after the read

Recoverable schedule — If a transaction Tj reads a data
item previously written by a transaction Ti, then the
commit operation of Ti appears before the commit
operation of Tj .

Cascading aborts
Cascading aborts/rollback – a single transaction failure

leads to a series of transaction rollbacks.

Consider the following schedule where none of the
transactions has yet committed

If T10 fails, T11 and T12 must also be rolled back.
Can lead to the undoing of a significant amount of work

Cascadeless schedules

 Cascadeless schedules — cascading aborts/rollbacks
cannot occur; for each pair of transactions Ti and Tj
such that Tj reads a data item previously written by Ti,
the commit operation of Ti appears before the read
operation of Tj .

Part-B
Concurrency Control

Concurrency Control
The system must control the interaction among the

concurrent transactions; this control is achieved
through mechanisms called concurrency control.

Type of Protocol used for concurrency control:

Lock-Based Protocols

Timestamp-Based Protocols

Lock-Based Protocols
One way to ensure serializability is to require that

data items be accessed in a mutually exclusive
manner.

A lock is a mechanism to control concurrent access
to a data item.

Data items can be locked in two modes :

Shared (S) mode-Data item can only read and cannot
write. S-lock is requested using lock-S instruction.

Exclusive (X) mode-Data item can be both read as
well as written. X-lock is requested using lock-X
instruction.

Lock Based Protocols
Transaction request for a appropriate lock depending

on the types of operations that it will perform on data
item.

Lock requests are made to concurrency-control
manager. Transaction can proceed only after request is
granted.

Compatibility Function

Granting of Locks

Granting of Locks

Granting of Locks

Granting of Locks

Granting of Locks
Request of lock is granted only if, no other

transaction is holding lock in an incompatible mode,
on requested data item.

Starvation Condition can occur

When a transaction Ti request a lock on data item Q
in a particular mode M, the lock is granted provided
that

There is no other transaction holding a lock on Q
in a mode incompatible with M.

There is no other transaction that is waiting for a
lock on Q and that made its lock request before Ti.

Two-Phase Locking Protocol

One protocol that ensures serializability is the two-
phase locking protocol.

This protocol requires that each transaction issue
lock and unlock requests in two phases:

Growing phase: A transaction may obtain locks, but
may not release any lock.

Shrinking phase: A transaction may release locks, but
may not obtain any new locks.

Two-Phase Locking Protocol
Initially, a transaction is in the growing phase.

The transaction acquires locks as needed.

Once the transaction releases a lock, it enters the
shrinking phase, and it can issue no more lock
requests.

The point in the schedule where the transaction has
obtained its final lock (the end of its growing phase)
is called the lock point.

Lock Conversions
Two-phase locking with lock conversions:
Upgrading:
can convert a lock-S to a lock-X (upgrade)
Downgrading:
can convert a lock-X to a lock-S (downgrade)

Upgrading can take place in only growing phase,
whereas downgrading can take place in only the
shrinking phase.

This protocol assures serializability. But still relies on
the programmer to insert the various locking
instructions

Limitations of Two phase
locking protocol

Modified Two-Phase Locking
Protocol

Strict two-phase locking - Here a transaction must
hold all its exclusive locks till it commits/aborts.

Rigorous two-phase locking is even stricter: here all
locks are held till commit/abort. In this protocol
transactions can be serialized in the order in which
they commit.

Timestamp Based Protocols
With each transaction Ti, system associate a unique

fixed timestamp, denoted by TS(Ti)

This timestamp is assigned before Ti starts execution

If a transaction Ti has been assigned a timestamp
TS(Ti), and a new transaction Tj enters the system,

 TS(Ti)< TS(Tj)
Methods for implementing –
system clock
logical counter

Timestamp Based Protocols
Each data item Q, associate with two timestamp values

W-timestamp(Q) – denotes the largest timestamp of
any transaction that executed write(Q) successfully.

R-timestamp(Q) – denotes the largest timestamp of
any transaction that executed read(Q) successfully.

These timestamp are updated whenever a new
read(Q) or write(Q) instruction is executed.

Timestamp Ordering Protocol
Suppose that transaction Ti issues read(Q)

If TS(Ti) < W-timestamp(Q), then Ti needs to read a
value of Q that was already overwritten. Hence, the
read operation is rejected, and Ti is rolled back.

If TS(Ti) ≥ W-timestamp(Q),then the read operation is
executed, and R-Timestamp(Q) is set to the maximum
of R-Timestamp(Q) and TS(Ti).

Timestamp Ordering Protocol
Suppose that transaction Ti issues write(Q)

If TS(Ti) < R-timestamp(Q), then Ti needs to update a
value of Q that was already read by other transaction.
Hence, the write operation is rejected, and Ti is rolled
back.

If TS(Ti) < W-timestamp(Q),then Ti is attempting to
write an obsolete value of Q. Hence the system rejects
this write operation and rolls Ti back.

Otherwise, the system executes write(Q) operation
and sets W-Timestamp(Q) to TS(Ti).

Deadlock Handling
System is deadlocked if there is a set of waiting

transactions such that every transaction in the set is
waiting for another transaction in the set.

Strategies to handle deadlock

Deadlock Prevention
Deadlock Detection
Deadlock Recovery

Deadlock Prevention
Deadlock prevention protocols ensure that the system
will never enter into a deadlock state.

Some prevention strategies :
–Require that each transaction locks all its data

items before it begins execution (predeclared).
– Impose partial ordering of all data items and

require that a transaction can lock data items only
in the order specified by the partial order .

Deadlock Prevention
wait-die scheme — non-preemptive
 older transaction may wait for younger one to

release data item. Younger transactions never wait
for older ones; they are rolled back instead.

wound-wait scheme — preemptive
 older transaction wounds (forces rollback) of

younger transaction instead of waiting for it.
Younger transactions may wait for older ones.

Deadlock Prevention
Timeout-Based Schemes :
 a transaction waits for a lock only for a specified

amount of time. After that, the wait times out and the
transaction is rolled back.

 thus deadlocks are not possible
 simple to implement; but starvation is possible. Also

difficult to determine good value of the timeout
interval.

Deadlock Detection
Deadlocks can be described as a wait-for graph, which
consists of a pair G = (V, E),
V is a set of vertices (all the transactions in the

system)
E is a set of edges; each element is an ordered pair
 Ti →Tj.

If Ti → Tj is in E, then there is a directed edge from
Ti to Tj, implying that Ti is waiting for Tj to release a
data item.

Deadlock Detection

The system is in a deadlock state if and only if the
wait-for graph has a cycle.

Must invoke a deadlock-detection algorithm
periodically to look for cycles.

Deadlock Recovery
When deadlock is detected :

Select a victim
Rollback –
 a. Total Rollback
 b. Partial Rollback
Starvation

Recovery System
Recovery system can restore the database to the

consistent state that existed before the failure.

Recovery system must provide high availability; that
is, it must minimize the time required for recovery.

Failure Classification
Transaction Failure – Logical Error , System Error
System Crash
Disk Failure

Recovery Methods

To recover from transaction failure following
recovery schemes are used -

Log based recovery

Shadow paging

Log-Based Recovery
 Log is the most widely used structure for recording

database modifications.
 The log is a sequence of log records, recording all the

update activities in the database.

 Types of Log -
 Start Log Record - < Ti, start >
 Update Log Record - < Ti, Xj, V1, V2 >
 Commit Log Record - < Ti, commit >
 Abort Log Record - < Ti, abort >

Log-Based Recovery
 Whenever a transaction performs a write, a log record for

that write is created.

 Once a log exists, we can output the modification to the
database if that is desirable.

 Database modification types -
Deferred Database Modification
Immediate Database Modification

 This scheme have the ability to undo a modification if
failure occurs

Deferred Database Modification
 The deferred modification technique ensures transaction

atomicity by recording all database modifications in the
log, but deferring the execution of all write operations of
a transaction until transaction partially commits.

 When a transaction partially commits, the information in
the log associated with transaction is used in executing
deferred writes.

 If failure/abort of transaction occurs then log is simply
ignored by system.

 If failure occur after execution then redo(Ti) is
performed

 redo(Ti) – It sets the value of all data items updated by
transaction Ti to the new values.

Deferred Database Modification
Example - Log Database

T0: Read(A) <T0,start>

 A = A – 50
 Write(A) <T0,A,1000,950>

 Read(B)

 B = B+50

 Write(B) <T0,B,2000,2050>
 A = 950

 B = 2050
 <T0,commit>

T1: Read(C) <T1, start>

 C = C-100

 Write(C) <T1,C,700,600>
 C = 600

 <T1,commit>

Deferred Database Modification
Failure occur – Write(B)

Example - Log

T0: Read(A) <T0,start>

 A = A – 50

 Write(A) <T0,A,1000,950>

 Read(B)

 B = B+50

 Write(B) <T0,B,2000,2050>

In above case as no commit log record appears in the
log system will ignore the log.

Deferred Database Modification
Failure occur – Write(C)
Example - Log

T0: Read(A) <T0,start>
 A = A – 50

 Write(A) <T0,A,1000,950>
 Read(B)

 B = B+50
 Write(B) <T0,B,2000,2050>

 <T0,commit>

T1: Read(C) <T1, start>
 C = C-100
 Write(C) <T1,C,700,600>

In above case redo(T0) wiil be done as both start and commit of T0 appear
in log, and as no commit log record of T1 appears in the log system will
ignore the log.

Deferred Database Modification
Failure occur – <T1,commit>
Example - Log

T0: Read(A) <T0,start>
 A = A – 50

 Write(A) <T0,A,1000,950>
 Read(B)

 B = B+50
 Write(B) <T0,B,2000,2050>

 <T0,commit>

T1: Read(C) <T1, start>
 C = C-100
 Write(C) <T1,C,700,600>

 <T1,commit>

In above case redo(T0) and redo(T1) wiil be done as both start and commit
of T0 and T1 appears in log.

Immediate Database Modification
 The immediate modification technique allows

database modifications to be output to the database
while the transaction is still in the active state.

 undo(Ti) – It restores the value of all data items
updated by transaction Ti to the old values.

 redo(Ti) – It sets the value of all data items updated
by transaction Ti to new values.

Immediate Database Modification
Example - Log Database

T0: Read(A) <T0,start>

 A = A – 50

 Write(A) <T0,A,1000,950> A = 950

 Read(B)

 B = B+50

 Write(B) <T0,B,2000,2050> B = 2050

 <T0,commit>

T1: Read(C) <T1, start>

 C = C-100

 Write(C) <T1,C,700,600> C = 600

 <T1,commit>

Immediate Database Modification
Failure occur – Write(B)

Example - Log

T0: Read(A) <T0,start>

 A = A – 50

 Write(A) <T0,A,1000,950>

 Read(B)

 B = B+50

 Write(B) <T0,B,2000,2050>

In above case as no commit log record appears in the
log system will undo(T0).

Immediate Database Modification
Failure occur – Write(C)
Example - Log

T0: Read(A) <T0,start>
 A = A – 50

 Write(A) <T0,A,1000,950>
 Read(B)

 B = B+50
 Write(B) <T0,B,2000,2050>

 <T0,commit>

T1: Read(C) <T1, start>
 C = C-100
 Write(C) <T1,C,700,600>

In above case redo(T0) wiil be done as both start and commit of T0 appear
in log, and as no commit log record of T1 appears in the log system will
undo(T1).

Immediate Database Modification
Failure occur – <T1,commit>
Example - Log

T0: Read(A) <T0,start>
 A = A – 50

 Write(A) <T0,A,1000,950>
 Read(B)

 B = B+50
 Write(B) <T0,B,2000,2050>

 <T0,commit>

T1: Read(C) <T1, start>
 C = C-100
 Write(C) <T1,C,700,600>

 <T1,commit>

In above case redo(T0) and redo(T1) wiil be done as both start and commit
of T0 and T1 appears in log.

Checkpoints
 Log based recovery required to search entire log to

determine which transaction need to be undone or
redone.

 Difficulties -
 The search process is time consuming.
 Most of the transaction need to be redone, have already

written their updates into the database.

 To reduce such types of overhead checkpoints are used.
 System periodically performs checkpoints, log written

by system <checkpoint>

Checkpoint Example

 T1 will be ignored (already updated)
 T2 and T3 will be redo
 T4 will be undo

Shadow Paging
 Database is partitioned into fixed size blocks- pages
 Location of all pages is stored – page table

Shadow Paging
 Shadow paging technique maintains two tables
 Current page table and Shadow page table

Query Processing,Optimization
and Performance tuning

Thank
You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

