
UNIT II
SQL

Database Languages
 Database language is used to handle database.

 Queries of database can be broadly classified as

 Data Definition Language
 Data Manipulation Language
 Data Control Language
 Transaction Control Language

Database Languages
Data-Definition Language (DDL)
The SQL DDL provides commands for defining relation

schemas, deleting relations, and modifying relation schemas.
Statements are used to define the database structure or schema.
Example:
 CREATE - to create objects in the database
 ALTER - alters the structure of the database
 DROP - delete objects from the database
 TRUNCATE - remove all records from a table, including all spaces allocated for the

records are removed
 COMMENT - add comments to the data dictionary
 RENAME - rename an object

Database Languages Contd…

Data-Manipulation Language (DML)
The SQL DML provides the ability to query information from

the database and to insert tuples into, delete tuples from, and
modify tuples in the database.

Statements are used for managing data within schema objects.
Example
 SELECT - Retrieve data from the database
 INSERT - Insert data into a table
 UPDATE - Updates existing data within a table
 DELETE - deletes all records from a table, the space for the records remain
 MERGE - UPSERT operation (insert or update)
 CALL - Call a PL/SQL or Java subprogram
 EXPLAIN PLAN - explain access path to data
 LOCK TABLE - control concurrency

Database Languages Contd…
Data Control Language (DCL)
These SQL commands are used for providing security to database

objects.
Example:
 GRANT - gives user's access privileges to database
 REVOKE - withdraw access privileges given with the GRANT command

Transaction Control Language (TCL)
Statements are used to manage the changes made by DML

statements. It allows statements to be grouped together into logical
transactions.

Example:
 COMMIT - save work done
 SAVEPOINT - identify a point in a transaction to which you can later roll back
 ROLLBACK - restore database to original since the last
 COMMIT SET TRANSACTION - Change transaction options like isolation level

and what rollback segment to use

MySQL
MySQL is a open source, fast, flexible, reliable, RDBMS being

used for many small and big businesses.
MySQL uses a standard form of the well-known SQL data

language.
MySQL is Written in C,C++
MySQL works on many operating systems and with many

languages including PHP, PERL, C, C++, JAVA, etc.
MySQL works very quickly and works well even with large

data sets.
MySQL is customizable.
MySQL supports large databases, up to 50 million rows or

more in a table. The default size limit for a table is 4GB, but
you can increase it to 8 terabytes (TB).

MySQL Basic Commands
To Start MySQL

 #mysql –u username –p

Enter password:

To Access user on Client

#mysql –h Host IP –u username –p

Enter password:

To Exit MYSQL

 #Exit; OR #Quit;

To check version of MYSQL

 #select version();

To check current date/time

 #select current_date;

 #select now();

MySQL Basic Commands
To Create a Database

 #create database [if not exists] database_name;

To Use a Database
#use database_name;

 Displaying Databases
#show databases;

Removing Databases
#drop database [if exists] database_name;

MySQL Data Type
Numeric Data Types
TINYINT- A very small integer (1 byte)
SMALLINT- A small integer (2 bytes)
MEDIUMINT- A medium-sized integer (3 bytes)
INT- A standard integer (4 bytes)
BIGINT- A large integer (8 bytes)
DECIMAL- A fixed-point number (varies)
FLOAT- A single-precision floating-point number (4 bytes)
DOUBLE- A double-precision floating-point number (8 bytes)
BIT- A bit field

MySQL Data Type
String Data Types
CHAR- A fixed-length non-binary (character) string
VARCHAR- A variable-length non-binary string
BINARY- A fixed-length binary string
TEXT- A small non-binary

Date and Time Data Types
DATE- A date value in ‘YY-MM-DD’ format
TIME- A time value in ‘hh:mm:ss’ format
DATETIME- A date and time value in ‘YY-MM-DD hh:mm:ss’ format
TIMESTAMP- A timestamp value in ‘YY-MM-DD hh:mm:ss’ format
YEAR- A year value in YY format

MySQL -Create Table
Simple Table Creation:-

#create table table_name (

 <column_name> <data_type>[(size)] ,

 <column_name> <data_type>[(size)]

);

Creation of Table Using SQL Constraints:

#Create table table_name (

 <column_name> <data_type>[(size)] <constraint> ,

 <column_name> <data_type>[(size)] <constraint>

);

MySQL -Create Table
The various constraints that can be issued are:-
NOT NULL: - Ensures that a column cannot have null values.
DEFAULT: - Provides a default value for a column when none is

specified.
UNIQUE: - Ensures that all values in a column are different.
Primary Key: - Used to uniquely identify a row in a table.
Foreign Key: - Used to ensure referential integrity of the data.

MySQL -Create Table
To check which table exist in current database
 #show tables;

To view a table structure

 #describe table_name;

To delete table
 #drop table table_name;

MySQL –Insert Query
Syntax:

#INSERT INTO table_name
VALUES (value1,value2,value3,...);

OR

#INSERT INTO table_name (column1,column2,column3,...)
VALUES (value1,value2,value3,...);

Example:
#INSERT INTO tutorials_tbl

 (tutorial_title, tutorial_author, submission_date)

 VALUES ("JAVA Tutorial", "Sanjay", '2007-05-06');

MySQL –Select Query
Retrieve data from table

#SELECT what_to_select

FROM which_table

WHERE conditions_to_satisfy

#SELECT field1, field2,...fieldN

 FROM table_name1

 [WHERE Clause]

 [LIMIT N]

#SELECT * FROM table_name;

MySQL –Select Query
The SELECT statement is composed of several clauses:
SELECT- chooses which columns of the table you want to get the

data.

FROM- specifies the table from which you get the data.

WHERE- filters rows to select.

ORDER BY- specifies the order of the returned result set.

LIMIT- constrains number of returned rows.

MySQL –Clause
Where Clause

 #SELECT column_name,column_name
FROM table_name
WHERE column_name operator value;

Order By Clause
#SELECT column_name, column_name

FROM table_name
ORDER BY column_name ASC|DESC;

Like Clause
#SELECT column_name(s)

FROM table_name
WHERE column_name LIKE pattern ;

% - represents zero,one or multiple characters

_ - represents one character

MySQL –Clause
Distinct Clause

#SELECT DISTINCT column_name,column_name
FROM table_name;

BETWEEN Clause

#SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;

AND/OR Condition

#SELECT column_name(s)
FROM table_name

 WHERE condition1 AND condition2 ... OR condition_n;

MySQL –Clause
IN Clause
IN clause is use to replace many OR conditions.
The IN operator can also be used in the WHERE clause of

other statements such as INSERT, UPDATE, DELETE, etc.

Syntax

#SELECT column_list

FROM table_name

WHERE (expr|column) IN ('value1','value2',...);

Example:
SELECT * FROM student

WHERE percent= 60 OR percent= 65 OR percent= 70 ;

SELECT * FROM student WHERE percent IN (60,65,70);

MySQL –UNION Keyword
 UNION is used –
 to select rows one after the other from several tables

Syntax
#SELECT column1, column2

UNION [DISTINCT | ALL]

SELECT column1, column2

Example:
#SELECT customerNumber id

FROM customers

UNION

SELECT employeeNumber id

FROM employees;

MySQL –Update/Delete
Update Query

#UPDATE table_name

 SET field1=new-value1, field2=new-value2

 [WHERE Clause]

Delete Query

#DELETE FROM table_name [WHERE Clause]

MySQL –Select Query
The SELECT statement is composed of several clauses:
GROUP BY- group rows to apply aggregate functions on each

group.
HAVING- filters group based on groups defined by GROUP BY

clause.

#SELECT column_name(s)
FROM table_name
[WHERE column_name]

 GROUP BY column_name

 [HAVING condition];

MySQL – Aggregate Functions
Min Max Function

#SELECT MAX (Field_Name) FROM Table_Name;

#SELECT MIN (Field_Name) FROM Table_Name;

AVG Function

#SELECT AVG (Field_Name) FROM Table_Name;

Count Function

#SELECT COUNT (*) FROM Table_Name;

Sum Function

#SELECT SUM (column_name) FROM Table_Name;

MySQL –Alter Table
To add a field

#ALTER TABLE table_name

 ADD new_column_name data_type [(size)];

To modify the data type of a field
#ALTER TABLE table_name

 MODIFY column_name <new-data-type>;

To delete a field
#ALTER TABLE table_name

 DROP column_name;

MySQL –Alter Table
To set a common value for a field(To set Default value)

#ALTER TABLE table_name ALTER Column_name SET
DEFAULT value;

 To change the name of a field

#ALTER TABLE table_name

CHANGE <old_Column_name>
<new_column_name> <data-type> ;

To change the name of a table

#ALTER TABLE old_table_name

RENAME TO <new_table_name > ;

Primary Key Concept
The PRIMARY KEY constraint uniquely identifies each record

in a database table.
Primary keys must contain UNIQUE values.
A primary key column cannot contain NULL values.
Only ONE primary key per relation.
Primary keys typically appear as columns in relational database

tables.
A primary key column often has AUTO_INCREMENT attribute

that generates a unique sequence for the key automatically.

Primary Key Concept
#CREATE TABLE users (

 user_id INT(2) PRIMARY KEY,

 username VARCHAR(40),

 password VARCHAR(255),

 email VARCHAR(255));

OR

#CREATE TABLE users (

 user_id INT(2) ,

 username VARCHAR(40),

 password VARCHAR(255),

 email VARCHAR(255) ,

 PRIMARY KEY(user_id));

Primary Key Concept
PRIMARY KEY constraints Using Auto Increment

#CREATE TABLE users (

 user_id INT AUTO_INCREMENT PRIMARY KEY,

 username VARCHAR(40),

 password VARCHAR(255),

 email VARCHAR(255));

OR

#CREATE TABLE roles(

 role_id INT AUTO_INCREMENT,

 role_name VARCHAR(50),

 PRIMARY KEY(role_id));

Primary Key Concept

PRIMARY KEY constraints using ALTER TABLE statement

#ALTER TABLE table_name

ADD PRIMARY KEY(primary_key_column);

Unique Key Concept
A unique key is a set of zero, one, or more attributes.

The value(s) of these attributes are required to be unique for
each tuple (row) in a relation.

The value, or combination of values, of unique key attributes for
any tuple should not be repeated for any other tuple in that
relation.

#CREATE TABLE Persons
(
P_Id int NOT NULL,
Name varchar(255) NOT NULL,
UNIQUE (P_Id)
);

Unique Key Concept

UNIQUE KEY constraints using ALTER TABLE statement

ALTER TABLE table_name

ADD CONSTRAINT MyUniqueConstraint UNIQUE(column1, column2...);

Foreign Key
A FOREIGN KEY is a field in a table that matches another field

of another table. A foreign key places constraints on data in the
related tables, which enables MySQL to maintain referential
integrity.

Referential integrity is a property of data which, when satisfied,
requires every value of one attribute (column) of a relation (table)
to exist as a value of another attribute in a different relation (table).

For referential integrity to hold in a relational database, any
column in a base/child table that is declared a foreign key can
contain either a null value, or only values from a parent table's
primary key.

Foreign Key
A FOREIGN KEY in one table points to a PRIMARY KEY in

another table.

Foreign Key
Foreign Key constraints using Create Statement

#CREATE TABLE Persons (
 P_Id int NOT NULL,
 P_name varchar(5),
 PRIMARY KEY (P_Id));

#CREATE TABLE Orders (
O_Id int NOT NULL,
OrderNo int NOT NULL,
P_Id int,
PRIMARY KEY (O_Id),
FOREIGN KEY (P_Id) REFERENCES Persons(P_Id)
);

 Foreign Key

Foreign Key constraints using ALTER TABLE statement
#ALTER TABLE Table_name

 ADD FOREIGN KEY (Column_name)
 REFERENCES parent_table(columns);

Foreign Key Constraints :

1. You can insert value into base/child table(FK) only if value
is present in parent table(PK) or NULL

2. You can delete value from base/child table(FK)

3. You cannot delete value from parent table(PK) if value is
referred in base/child table(FK)

MySQL View
A view is a virtual table.
View is a data object which does not contain any data.
Contents of the view are the resultant of a base table.
They are operated just like base table but they don’t contain any

data of their own.
The difference between a view and a table is that views are

definitions built on top of other tables (or views).
If data is changed in the underlying table, the same change is

reflected in the view.
A view can be built on top of a single or multiple tables.

MySQL View Contd…

Creating View

#CREATE OR REPLACE

 VIEW [view_name]

 AS

 [SELECT statement]

 Example:

#CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

MySQL View Contd…

Updating Views

#UPDATE view_name

 SET field1=new-value1, field2=new-value2

 [WHERE Clause]

Example:
#UPDATE TE

SET phone = 9096239923'

WHERE name = “sagar”;

MySQL View Contd…

Alter a View

#ALTER [OR REPLACE] VIEW view_name [(column_list)]

 AS

 Select_Statement;

Drop a View

#DROP VIEW view name;

Display a View

 #SHOW CREATE VIEW view name;

MySQL View Contd…

CREATE VIEW with WHERE

#CREATE VIEW view_name

 AS

 SELECT Column_name FROM Table_name

 WHERE condition;

CREATE VIEW with AND and OR

#CREATE VIEW view_name

AS

 SELECT Column_name FROM Table_name

 WHERE (Condition1 AND Condition2)

 OR (Condition3 AND Condition4);

MySQL View Contd…

CREATE VIEW with LIKE

#CREATE VIEW view_name

 AS SELECT Column_name

 FROM Table_name

 WHERE Column_name LIKE ”Pattern%”

 AND Column_name NOT LIKE ”%Pattern”;

CREATE VIEW with GROUP BY

#CREATE VIEW view_name

 AS SELECT Column_name

 FROM Table_name

 GROUP BY Column_name;

MySQL Create User
 CREATE USER

CREATE USER 'newuser'@'localhost' IDENTIFIED BY
'password';

CREATE USER 'anu'@'localhost' IDENTIFIED BY 'anu';

 Login using user

 # mysql -u anu -p

 Enter password: anu

MySQL Grant/Revoke
Grant Statement

#GRANT privileges ON object TO user;

 #GRANT [type of permission]

 ON [database name].[table name]

 TO ‘[username]’@'localhost’;

Privileges
SELECT , INSERT , UPDATE , DELETE , INDEX , CREATE , ALTER , DROP ,ALL

etc.

#GRANT SELECT, INSERT, UPDATE, DELETE

ON mescoe.student TO 'abc'@'localhost';

MySQL Grant/Revoke
Grant Statement

#GRANT ALL PRIVILEGES ON mescoe.student TO
‘abc'@'localhost';

#GRANT ALL PRIVILEGES ON * . * TO 'abc'@'localhost';

Revoke Statement

#REVOKE privileges ON object FROM user;

MySQL Index
A database Index is a data structure that improves the speed of

operations in a table.
Indexes can be created using one or more columns.
Practically, indexes are also type of tables, which keep primary

key or index field and a pointer to each record into the actual
table.

The users cannot see the indexes, they are just used to speed up
queries and will be used by Database Search Engine to locate
records very fast.

INSERT and UPDATE statements take more time on tables
having indexes where as SELECT statements become fast on
those tables.

MySQL Index

Simple Index on Existing Table

#CREATE INDEX [index name] ON [table name]([column name]);

Simple Index on New Table

#CREATE TABLE table_name(col_name1,Col_name2, INDEX
(col_name));

MySQL Index
Unique Index
A unique index means that two rows cannot have the same index

value.
Unique indexes work in much the same way as a primary key.
 Only one primary key, any number of unique indexes can be

created with any number of fields.

#CREATE UNIQUE INDEX index_name

ON table_name (column1, column2,...);

Index the values in a column in descending order-

 #CREATE UNIQUE INDEX index_name

ON table_name (column_name DESC);

MySQL Index
ALTER command to ADD INDEX

Unique Index

 #ALTER TABLE tbl_name ADD UNIQUE index_name (col_list);

Simple Index

#ALTER TABLE tbl_name ADD INDEX index_name (col_list);

 FULLTEXT index that is used for text-searching purposes

#ALTER TABLE tbl_name ADD FULLTEXT index_name
(col_list);

MySQL Index

ALTER command to DROP INDEX

ALTER TABLE tbl_name DROP INDEX index_name;

Displaying INDEX Information

 #SHOW INDEX FROM table_name;

 #SHOW INDEX FROM table_name\G

 Vertical-format output (specified by \G)

MySQL Joins
MySQL joins are used to combine rows from two or more tables.

Different SQL JOINs
INNER JOIN: Returns all rows when there is at least one match in

BOTH tables
LEFT JOIN: Return all rows from the left table, and the matched

rows from the right table
RIGHT JOIN: Return all rows from the right table, and the

matched rows from the left table
FULL JOIN: Return all rows when there is a match or not in either

left or right table

MySQL Inner Joins
The INNER JOIN keyword selects all rows from both tables as

long as there is a match between the columns in both tables.

#SELECT column_name(s)
FROM table1
INNER JOIN table2
ON table1.column_name=table2.column_name;

OR

SELECT column_list

FROM table1

INNER JOIN table2 ON join_condition1

INNER JOIN table3 ON join_condition2

...

WHERE where_conditions;

MySQL Inner Joins Contd…

author count

Korth 3

Sudarshan 5

Desai 1

id title author sub_date

1 DBMS korth 2007-05-24

2 SPOS Desai 2009-02-20

3 DBMS Conolly 2002-01-01

tcounttcount

tutorialtutorial

MySQL Inner Joins Contd…

#SELECT tcount.author, tutorial.id, tutorial.title
FROM tcount
INNER JOIN tutorial
ON tcount.author=tutorial.author;

author id title

korth 1 DBMS

desai 2 SPOS

MySQL Left Joins
The LEFT JOIN keyword returns all rows from the left table

(table1), with the matching rows in the right table (table2).
The result is NULL in the right side when there is no match.

#SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name=table2.column_name;

OR

#SELECT column_name(s)
FROM table1
LEFT OUTER JOIN table2
ON table1.column_name=table2.column_name;

MySQL Left Joins Contd…

author count

Korth 3

Sudarshan 5

Desai 1

id title author sub_date

1 DBMS korth 2007-05-24

2 SPOS Desai 2009-02-20

3 DBMS Conolly 2002-01-01

tcounttcount

tutorialtutorial

MySQL Left Joins Contd…

#SELECT tcount.author, tutorial.id,tutorial.title
FROM tcount
LEFT JOIN tutorial
ON tcount.author=tutorial.author;

author id title

korth 1 DBMS

sudarshan NULL NULL

desai 2 SPOS

MySQL Right Joins
The RIGHT JOIN keyword returns all rows from the right table

(table2), with the matching rows in the left table (table1).
The result is NULL in the left side when there is no match.

#SELECT column_name(s)
FROM table1
RIGHT JOIN table2
ON table1.column_name=table2.column_name;

OR

#SELECT column_name(s)
FROM table1
RIGHT OUTER JOIN table2
ON table1.column_name=table2.column_name;

MySQL Right Joins Contd…

author count

Korth 3

Sudarshan 5

Desai 1

id title author sub_date

1 DBMS korth 2007-05-24

2 SPOS Desai 2009-02-20

3 DBMS Conolly 2002-01-01

tcounttcount

tutorialtutorial

MySQL Right Joins Contd…

#SELECT tcount.author, tutorial.id,tutorial.title , tutorial.author
FROM tcount
RIGHT JOIN tutorial
ON tcount.author=tutorial.author;

author id title author

korth 1 DBMS korth

desai 2 SPOS desai

NULL 3 DBMS conolly

MySQL Full Joins
The FULL OUTER JOIN keyword returns all rows from the left

table (table1) and from the right table (table2).
The FULL OUTER JOIN keyword combines the result of both

LEFT and RIGHT joins.
UNION Keyword can be used to combine result

#SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name=table2.column_name

 UNION

 SELECT column_name(s)
 FROM table1
 RIGHT JOIN table2
 ON table1.column_name=table2.column_name;

MySQL Full Joins Contd…

author count

Korth 3

Sudarshan 5

Desai 1

id title author sub_date

1 DBMS korth 2007-05-24

2 SPOS Desai 2009-02-20

3 DBMS Conolly 2002-01-01

tcounttcount

tutorialtutorial

MySQL Full Joins Contd…
#SELECT * FROM tcount LEFT JOIN tutorial

 ON tcount.author=tutorial.author

 UNION

 SELECT * FROM tcount RIGHT JOIN tutorial
 ON tcount.author=tutorial.author

author count id title author sub_date

korth 3 1 DBMS korth 2007-05-24

sudarshan 5 NULL NULL NULL NULL

desai 1 2 SPOS desai 2009-02-20

NULL NULL 3 DBMS conolly 2002-01-01

 END OF SQL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

