

Introduction to PL/SQL
❖ PL SQL basically stands for "Procedural Language extensions to SQL".

❖ It is Extension of Structured Query Language (SQL) that is used in Oracle.

❖ Unlike SQL, PL/SQL allows the programmer to write code in procedural
format.

❖ It combines the data manipulation power of SQL with the processing power
of procedural language to create a super powerful SQL queries.

❖ It allows the programmers to instruct the compiler 'what to do' through SQL
and 'how to do' through its procedural way.

❖ PL/SQL is a completely portable, high-performance transaction-processing
language.

❖ PL/SQL provides a built-in, interpreted and OS independent programming
environment.

Advantage of Using PL/SQL
❖ Better performance, as SQL is executed in bulk rather than a

single statement

❖ Block Structures

❖ Procedural Language Capability

❖ Full Portability

❖ Support Object Oriented Programming concepts

❖ Error Handling

SQL PL/SQL

SQL is a single query that is
used to perform DML and DDL
operations.

PL/SQL is a block of codes that used
to write the entire program blocks/
procedure/ function, etc.

It is declarative, that defines
what needs to be done, rather
than how things need to be
done.

PL/SQL is procedural that defines
how the things needs to be done.

Execute as a single statement. Execute as a whole block.

Mainly used to manipulate
data.

Mainly used to create an application

Cannot contain PL/SQL code in
it.

It is an extension of SQL, so it can
contain SQL inside it.

Architecture of PL/SQL

Block Structure of PL/SQL

DECLARE
 Variable declaration (Optional)

BEGIN Program ExecutionSQL Statement (Mandatory)

EXCEPTION Exception handling (Optional)

END; (Mandatory)

Displaying user messages on
screen

dbms_output : It is a package that includes a number of
procedures and fuctions that accumulate information in a buffer so
that it can be retrieved later.

put_line: puts a piece of information in the package buffer
followed by an end-of-line marker. Used to display message
onscreen.

Display messages on screen:
 Set serveroutput on

PL/SQL First Program: Hello World

set serveroutput on
BEGIN

dbms_output.put_line('Hello World');
END;
/
===
Output

Hello World

PL/SQL procedure successfully completed.

PL/SQL Variables
❖ It needs to declare the variable first in the declaration section

of a PL/SQL block before using it.
❖ By default, variable names are not case sensitive.
❖ A reserved PL/SQL keyword cannot be used as a variable

name.
❖ Syntax for declaring variable:

variable_name datatype(size) [NOT NULL] [:= value];

✔ variable_name is the name of the variable.
✔ datatype is a valid SQL datatype.
✔ NOT NULL is an optional specification on the variable.
✔ value or DEFAULT value is also an optional specification, where you can

initialize a variable.
✔ Each variable declaration is a separate statement and must be terminated

by a semicolon.

PL/SQL Variables
❖ Example declaring variable:
✔ For example, if you want to store the current salary of an

employee
✔ When a variable is specified as NOT NULL, you must

initialize the variable when it is declared.
 
DECLARE

salary number(4);

dept varchar2(10) NOT NULL :=”Comp”;

 Desg varchar2(10) := “HR”;

"Hello World" using the variables

DECLARE
message varchar2(20):= 'Hello World!';

BEGIN
dbms_output.put_line(message);

END;
/
===
Output
Hello World!
PL/SQL procedure successfully completed.

Example of initializing variable
DECLARE
 a integer := 30;
 b integer := 40;
 c integer;
 f real;
BEGIN
 c := a + b;
 dbms_output.put_line('Value of c: ' || c);
 f := 100.0/3.0;
 dbms_output.put_line('Value of f: ' || f);
END;
/
===
OUTPUT
Value of c: 70
Value of f: 33.333333333333333333

PL/SQL procedure successfully completed.

Assign values to Variables
❖ We can assign values to variables in the two ways given

below.
We can directly assign values to variables.

✔ The General Syntax is:
variable_name:= value;

We can assign values to variables directly from the database
columns by using a SELECT.. INTO statement.

✔ The General Syntax is:
SELECT column_name
INTO variable_name
FROM table_name
[WHERE condition];

Assign values to Variables
DECLARE
 var_salary number(6);
 var_emp_id number(6) := 101;
BEGIN
 SELECT salary INTO var_salary FROM employee
WHERE emp_id = var_emp_id;
 dbms_output.put_line('The employee ' || var_emp_id || ' has
salary ' || var_salary);
 END;
 /
==
OUTPUT
The employee 101 has salary 2500
PL/SQL procedure successfully completed.

Variable Scope in PL/SQL
❖ PL/SQL allows nesting of blocks.
❖ A program block can contain another inner block.
❖ If you declare a variable within an inner block, it is not

accessible to an outer block.
❖ There are two types of variable scope:

Local Variable: Local variables are the inner block variables
which are not accessible to outer blocks.

Global Variable: Global variables are declared in outermost
block.

Variable Scope in PL/SQL
DECLARE

-- Global variables
 a integer := 10;
 b integer := 20;
 c integer;
 BEGIN

dbms_output.put_line('Outer Variable a: ' || a);
dbms_output.put_line('Outer Variable b: ' || b);
c := a + b;
dbms_output.put_line('Value of c: ' || c);

 DECLARE

-- Local variables
a integer := 40;
b integer := 30;
d integer;

 BEGIN
dbms_output.put_line('Inner Variable a: ' || a);
dbms_output.put_line('Inner Variable b: ' || b);

 d:= a - b;
 dbms_output.put_line('Value of d: ' || d);
 END;
END;
/

OUTPUT
Outer Variable a: 10
Outer Variable b: 20
Value of c: 30
Inner Variable a: 40
Inner Variable b: 30
Value of d: 10

PL/SQL procedure
successfully completed.

PL/SQL Constants
❖ Syntax to declare a constant:

constant_name CONSTANT datatype := VALUE;

✔ Constant_name: it is the name of constant just like variable name. The
constant word is a reserved word and its value does not change.

✔ VALUE: it is a value which is assigned to a constant when it is
declared. It can not be assigned later.

Example PL/SQL Constants
DECLARE
 -- constant declaration
 pi constant number := 3.141592654;
 -- other declarations
 radius number(5,2);
 dia number(5,2);
 circumference number(7, 2);
 area number (10, 2);
BEGIN
 radius := 9.5;
 dia := radius * 2;
 circumference := 2.0 * pi * radius;
 area := pi * radius * radius;
 dbms_output.put_line('Radius: ' || radius);
 dbms_output.put_line('Diameter: ' || dia);
 dbms_output.put_line('Circumference: ' || circumference);

 dbms_output.put_line('Area: ' || area);
END;
/

OUTPUT
Radius: 9.5
Diameter: 19
Circumference: 59.69
Area: 283.53

Pl/SQL procedure successfully com
pleted.

Control Statements IF
❖ PL/SQL supports the programming language features like

conditional statements and iterative statements.

❖ Its programming constructs are similar to how you use in
programming languages like Java and C++.

❖ There are different syntaxes for the IF-THEN-ELSE
statement.

PL/SQL If Statement

Syntax: (IF-THEN statement):
IF condition THEN
Statement: It is executed when
condition is true END IF;

 Syntax: (IF-THEN-ELSE statement):
IF condition
THEN
 {statements to execute when condition is TRUE} ELSE {statements to execute when condition is FALSE}
END IF;

Syntax: (IF-THEN-ELSIF statement):
IF condition1
THEN
{statements to execute when
condition1 is TRUE...}
ELSIF condition2
THEN
 {statements to execute when condition2 is TRUE...}
END IF;

Syntax: (IF-THEN-ELSIF-ELSE statement):
IF condition1
THEN {statements to execute when condition1 is TRUE..}
 ELSIF condition2
THEN
 {statements to execute when condition2 is TRUE..}
 ELSE
 {statements to execute when both condition1 and condition2 are FALSE...}
END IF;

Example of PL/SQL If Statement
DECLARE
 a number(3) := 500;
BEGIN
 -- check the boolean condition using if statement
 IF(a < 20) THEN
 -- if condition is true then print the following
 dbms_output.put_line('a is less than 20 ');
 ELSE
 dbms_output.put_line('a is not less than 20 ');
 END IF;
 dbms_output.put_line('value of a is : ' || a);
END;
/
===
OUTPUT
a is not less than 20
value of a is : 500

PL/SQL procedure successfully completed.

Example of PL/SQL Case Statement❖ Syntax for the CASE Statement:
CASE [expression]
WHEN condition_1 THEN result_1
 WHEN condition_2 THEN result_2
 ...
 WHEN condition_n THEN result_n
 ELSE result
END CASE
 ❖ Example for the CASE Statement:
DECLARE
 grade char(1) := 'A';
BEGIN
 CASE grade
 when 'A' then dbms_output.put_line('Excellent');
 when 'B' then dbms_output.put_line('Good');
 when 'C' then dbms_output.put_line('Average');
 else dbms_output.put_line('Failed');
 END CASE;
END;
/

OUTPUT
Excellent
PL/SQL procedure successfully completed.

PL/SQL Loop
❖ The PL/SQL loops are used to repeat the execution of one or

more statements for specified number of times.

❖ These are also known as iterative control statements.

❖ Syntax for a basic loop:

LOOP
 Sequence of statements;
END LOOP;

❖ Types of PL/SQL Loops
1. Basic Loop / Exit Loop
2. While Loop
3. For Loop

PL/SQL Exit Loop
❖ PL/SQL exit loop is used when a set of statements is to be executed at least once

before the termination of the loop.
❖ There must be an EXIT condition specified in the loop, otherwise the loop will get

into an infinite number of iterations.

❖ Syntax of Exit loop:
LOOP
 statements;
 EXIT;
 {or EXIT WHEN condition;}
END LOOP;

❖ Example of Exit loop:
DECLARE
i integer := 1;
BEGIN
Loop
Exit When i> 10;
dbms_output.put_line(i);
i := i+1;
END Loop;
END;
/

OUTPUT
1
2
3
4
5
6
7
8
9
10

PL/SQL procedure successfully completed.

PL/SQL While Loop
❖ Syntax of While loop:
WHILE <condition>
 LOOP statements/Action
END LOOP;

❖ Example of While loop:
DECLARE
i integer := 1;
BEGIN
WHILE i <= 10 LOOP
dbms_output.put_line(i);
i := i+1;
END LOOP;
END;
/

OUTPUT
1
2
3
4
5
6
7
8
9
10

PL/SQL procedure successfully completed.

❖ Important steps to follow when executing a while loop:
✔ Initialise a variable before the loop body.
✔ Increment the variable in the loop.
✔ EXIT WHEN statement and EXIT statements can be used in while loops but

it's not done oftenly.

PL/SQL FOR Loop
❖ Syntax of For loop:
FOR counter IN initial_value .. final_value
 LOOP statements;
END LOOP;

✔ initial_value : Start integer value
✔ final_value : End integer value

❖ Example of For loop:

BEGIN
FOR k IN 1..10
LOOP
-- note that k was not declared
dbms_output.put_line(k);
END LOOP;
END;
/

OUTPUT
1
2
3
4
5
6
7
8
9
10

PL/SQL procedure successfully
completed.

PL/SQL Stored Procedure
❖ The PL/SQL stored procedure or simply a procedure is a

PL/SQL block which performs one or more specific tasks. It
is just like procedures in other programming languages.

❖ A procedure may or may not return any value

❖ The procedure contains a header and a body.

Header: The header contains the name of the procedure and
the parameters or variables passed to the procedure.

Body: The body contains a declaration section, execution
section and exception section similar to a general PL/SQL
block.

Procedures: Passing Parameters
❖ IN parameters:

The IN parameter can be referenced by the procedure or function.
This parameter is used for giving input to the subprograms.
It is a read-only variable inside the subprograms, their values cannot be
changed inside the subprogram

❖ OUT parameters:
The OUT parameter cannot be referenced by the procedure or function.
This parameter is used for getting output from the subprograms.
It is a read-write variable inside the subprograms, their values can be
changed inside the subprograms.

❖ INOUT parameters:
The INOUT parameter can be referenced by the procedure or function.
This parameter is used for both giving input and for getting output from the
subprograms.
It is a read-write variable inside the subprograms, their values can be
changed inside the subprograms.

PL/SQL Create Procedure
Syntax for creating procedure:
CREATE [OR REPLACE] PROCEDURE procedure_name
 [(parameter_name {IN | OUT | INOUT} datatype ,)]

IS | AS
 [Declaration_section]

BEGIN
 Executable_section

[EXCEPTION
 Exception_section]

END [procedure_name];
 /
===
Syntax for drop procedure
DROP PROCEDURE procedure_name

Create Procedure: Example

CREATE OR REPLACE PROCEDURE Hello(message IN
VARCHAR2)
IS
BEGIN

dbms_output.put_line('Hello !!! How are you '||message);
END;
/
==
OUTPUT
Exec Hello('Shraddha');

Hello !!! How are you Shraddha

Create Procedure: Example
❖ Table creation:

create table student(id number(10) Primary key,name varchar2(20));

Now write the procedure code to insert record in user table.

❖ Procedure Code:
create or replace procedure studentdata(id IN NUMBER,name IN

VARCHAR2)
 is
 begin
 insert into student values(id,name);
 end;
 /

Procedure created.

Create Procedure Example
❖ PL/SQL program to call procedure
SQL> select * from student;
no rows selected
==
BEGIN
 studentdata(101,'Rahul');
 dbms_output.put_line('record inserted successfully');
 END;
 /
==
record inserted successfully
PL/SQL procedure successfully completed.
==
SQL> select * from student;

 ID NAME
---------- --------------------
 101 Rahul

PL/SQL Function
❖ The PL/SQL Function is very similar to PL/SQL

Procedure.

❖ The main difference between procedure and a function is, a
function must always return a value, and on the other hand
a procedure may or may not return a value.

❖ Except this, all the other things of PL/SQL procedure are
true for PL/SQL function too.

PL/SQL Function
❖ Syntax to create a function:

CREATE [OR REPLACE] FUNCTION function_name
 [(parameter_name {IN } datatype , ...)]

RETURN return_datatype

{IS | AS}
 -- declaration can be done here
BEGIN
 < function_body >

END [function_name];
/
==
Syntax for removing your created function:
DROP FUNCTION function_name;

PL/SQL Function
❖ Simple example to create a function
create or replace function adder(n1 IN number, n2 IN number)

return number
IS

n3 number(8);
BEGIN

n3 :=n1+n2;
return n3;

END;
/

Function created.

PL/SQL Function
❖ Program to call the function.
DECLARE
 n3 number(2);
BEGIN
 n3 := adder(11,22);
 dbms_output.put_line('Addition is: ' || n3);
END;
/
===
OUTPUT
Addition is: 33

PL/SQL procedure successfully completed.

PL/SQL Cursor
❖ When an SQL statement is processed, Oracle creates a

memory area known as context area.

❖ A cursor is a pointer to this context area.

❖ It contains all information needed for processing the
statement.

❖ In PL/SQL, the context area is controlled by Cursor.

❖ A cursor contains information on a select statement and the
rows of data accessed by it.

❖ A cursor can hold more than one row, but can process only one
row at a time. The set of rows the cursor holds is called the
active data set.

PL/SQL Implicit Cursors
❖ The implicit cursors are automatically generated by Oracle

while an SQL statement is executed, if you don't use an
explicit cursor for the statement.

❖ These are created by default to process the statements when
DML statements like INSERT, UPDATE, DELETE etc. are
executed.

❖ Oracle provides some attributes known as Implicit cursor's
attributes to check the status of DML operations.

%FOUND, %NOTFOUND, %ROWCOUNT and %ISOPEN.

Implicit Cursor Attributes
%FOUND - SQL%FOUND

Return Value
 TRUE - if the DML statements like INSERT, DELETE and

UPDATE affect at least one row And if SELECT ….INTO
statement return at least one row.

 FALSE - if DML statements like INSERT,DELETE and
UPDATE do not affect row and if SELECT….INTO
statement do not return a row

Implicit Cursor Attributes
%NOTFOUND - SQL%NOTFOUND

Return Value
 TRUE - if the DML statements like INSERT, DELETE

and UPDATE do not affect at least one row and if
SELECT ….INTO statement does not return any row.

 FALSE - if the DML statements like INSERT, DELETE
and UPDATE affect at least one row And if SELECT
….INTO statement return at least one row.

Implicit Cursor Attributes
%ROWCOUNT - SQL%ROWCOUNT

Return Value - Return the number of rows affected by the
DML operations INSERT, DELETE, UPDATE, SELECT.

%ISOPEN - SQL%ISOPEN
 It always returns FALSE for implicit cursors, because the

SQL cursor is automatically closed after executing its
associated SQL statements.

PL/SQL Implicit Cursors Example
BEGIN
 UPDATE employee SET branch = ‘Pune’ where emp_id

= 101;
 IF sql%found THEN
 dbms_output.put_line('Branch updated successfully');
 END IF;
 IF sql%notfound THEN
 dbms_output.put_line('Emp id does not exist ');
 END IF;
END;
/

OUTPUT
Branch updated successfully

PL/SQL procedure successfully completed

PL/SQL Implicit Cursors Example
DECLARE
 total_rows number(2);
BEGIN
 UPDATE customers SET salary = salary + 500;
 IF sql%notfound THEN
 dbms_output.put_line('no customers selected');
 ELSIF sql%found THEN
 total_rows := sql%rowcount;
 dbms_output.put_line(total_rows || ' customers

selected ');
 END IF;
END;
/

OUTPUT
6 customers selected

PL/SQL procedure successfully completed

PL/SQL Explicit Cursors
❖ The Explicit cursors are defined by the programmers to gain

more control over the context area.

❖ These cursors should be defined in the declaration section of the
PL/SQL block. It is created on a SELECT statement which
returns more than one row.

❖ General Syntax for creating a cursor:
CURSOR cursor_name IS select_statement;

❖ Steps:
Declare the cursor to initialize in the memory.
Open the cursor to allocate memory.
Fetch the cursor to retrieve data.
Close the cursor to release allocated memory.

PL/SQL Explicit Cursors
❖ 1) Declare the cursor:

It defines the cursor with a name and the associated SELECT statement.
CURSOR cursor_name IS SELECT statement;

❖ 2) Open the cursor:
It is used to allocate memory for the cursor and make it easy to fetch the
rows returned by the SQL statements into it.

OPEN cursor_name;

❖ 3) Fetch the cursor:
It is used to access one row at a time. You can fetch rows from the
above-opened cursor as follows:

 FETCH cursor_name INTO variable_list;

❖ 4) Close the cursor:
It is used to release the allocated memory. The following syntax is used to
close the above-opened cursors.

CLOSE cursor_name;

PL/SQL Explicit Cursors
❖ General Form of using an explicit cursor is:

DECLARE
CURSOR <cursor_name> IS <SELECT statement>;
<cursor_variable declaration>;

BEGIN
 OPEN <cursor_name>;
 FETCH <cursor_name> INTO <cursor_variable>;
 .
 .

 CLOSE <cursor_name>;

END;

PL/SQL Explicit Cursors
❖ When a cursor is opened, the first row becomes the current

row. When the data is fetched it is copied to the record or
variables and the logical pointer moves to the next row and it
becomes the current row.

❖ Points to remember while fetching a row:

We can fetch the rows in a cursor into a PL/SQL, record or a list of
variables created in the PL/SQL Block.

If you are fetching a cursor to a list of variables, the variables should be
listed in the same order in the fetch statement as the columns are present
in the cursor.

PL/SQL Explicit Cursors

❖ When does an error occur while accessing an explicit
cursor?

When we try to open a cursor which is not closed in the previous
operation.

 When we try to fetch a cursor after the last operation.

Attributes Return Values

%FOUND
Cursor_name%FOUND

TRUE, if fetch statement returns at least one row.
FALSE, if fetch statement doesn’t return a row.

%NOTFOUND
Cursor_name
%NOTFOUND

TRUE, , if fetch statement doesn’t return a row.

FALSE, if fetch statement returns at least one row.

%ROWCOUNT
Cursor_name
%ROWCOUNT

The number of rows fetched by the fetch statement
If no row is returned, the PL/SQL statement returns an
error.

%ISOPEN
Cursor_name%ISOPEN

TRUE, if the cursor is already open in the program

FALSE, if the cursor is not opened in the program.

Attributes Return values

PL/SQL Explicit Cursors Example
DECLARE
 c_id customers.id%type;
 c_name customers.name%type;
 c_addr customers.address%type;
 CURSOR c_customers is SELECT id, name, address FROM customers;

BEGIN
 OPEN c_customers;
 LOOP
 FETCH c_customers into c_id, c_name, c_addr;
 EXIT WHEN c_customers%notfound;
 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);
 END LOOP;
 CLOSE c_customers;
END;
/

OUTPUT
1 abc pune
2 pqr mumbai
3 xyz nasik

PL/SQL procedure successfully completed

PL/SQL Explicit Cursors Example
DECLARE
CURSOR c_emp IS SELECT emp_name FROM emp;
c_emp_name emp.emp_name%type;

BEGIN
OPEN c_emp;

LOOP
 FETCH c_emp INTO c_emp_name;
 IF c_emp%NOTFOUND THEN
 EXIT;
 END IF;
 Dbms_output.put_line(‘Employee

Fetched:‘||c_emp_name);
END LOOP;
 Dbms_output.put_line(‘Total rows fetched

is‘||c_emp%R0WCOUNT);
CLOSE c_emp;
END;
/

OUTPUT
Employee Fetched:BBB
Employee Fetched:XXX
Employee Fetched:YYY

Total rows fetched is 3

 Explicit Cursors Example using FOR loop

DECLARE
CURSOR c_emp IS SELECT emp_name FROM emp;
c_emp_name emp.emp_name%type;

BEGIN
FOR c_emp_name IN c_emp
LOOP
Dbms_output.put_line(‘Employee Fetched:‘||c_emp_name);
END LOOP;
END;
/

OUTPUT
Employee Fetched:BBB
Employee Fetched:XXX
Employee Fetched:YYY

Parameterized Cursor

● A cursor that accepts user defined values into its parameters, thus
changing the Result extracted, it is called as Parameterized cursor.

● PL/SQL Parameterized cursor pass the parameters into a cursor and
use them into query.

● PL/SQL Parameterized cursor define only datatype of parameter
and

 not need to define it's length.

● Parameterized cursors are also saying static cursors that can passed
 parameter value when cursor are opened.

Parameterized Cursor
Syntax for declaring parameterized cursor:

CURSOR cursor_name (variable_name datatype)
 IS
 select_query;

Syntax for opening cursor:
OPEN cursor_name (value_list);

Parameterized Cursor Example
DECLARE
 cursor c(no number) is select * from emp_information
 where emp_no = no;
 tmp emp_information%rowtype;
BEGIN
 OPEN c(4);
 FOR tmp IN c(4)
 LOOP
 dbms_output.put_line('EMP_No:

'||tmp.emp_no);
 dbms_output.put_line('EMP_Name:

'||tmp.emp_name);
 dbms_output.put_line('EMP_Dept:

'||tmp.emp_dept);

dbms_output.put_line('EMP_Salary:'||tmp.emp_salar
y);

 END Loop;
CLOSE c;
END;
/

EMP_No: 4
EMP_Name: Zenia Sroll
EMP_Dept: Web Developer
EMP_Salary: 42k

PL/SQL procedure successfully completed.

Parameterized Cursor Example

DECLARE
 rec_product products%ROWTYPE;
 CURSOR cur_product (low_price NUMBER,

high_price NUMBER)
 IS SELECT * FROM products
 WHERE list_price BETWEEN low_price AND

high_price;
BEGIN
 OPEN cur_product(50,100);
 LOOP
 FETCH cur_product INTO rec_product;
 EXIT WHEN cur_product%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(rec_product.product_na
me || ': ' ||
rec_product.list_price);

 END LOOP;
 CLOSE cur_product;
END;
/

PL/SQL Trigger
❖ A database trigger is a stored procedure that

automatically executes whenever an event occurs.
The event may be insert-delete-update operations.

❖ Trigger is invoked by Oracle engine automatically
whenever a specified event occurs.

❖ Trigger is stored into database and invoked
repeatedly, when specific condition match.

❖ Triggers could be defined on the table, view,
schema, or database with which the event is
associated.

PL/SQL Trigger
❖ A procedure is executed explicitly from another block via a

procedure call with passing arguments,
❖ While a trigger is executed (or fired) implicitly whenever the

triggering event (DML: INSERT, UPDATE, or DELETE)
happens, and a trigger doesn't accept arguments.

❖ Triggers has three basic parts:
Trigerring Event or Statement – It is a SQL statement that causes a
trigger to be fired.

Trigger Restriction – A trigger restriction specifies a boolean(logical)
expression that must be TRUE for the trigger to fire.

Trigger Action – Action to be taken when trigger statement is
encountered.

Types of Triggers
❖ BEFORE Trigger : BEFORE trigger execute before the

triggering DML statement (INSERT, UPDATE, DELETE)

execute. Triggering SQL statement is may or may not

execute, depending on the BEFORE trigger conditions block.

❖ AFTER Trigger : AFTER trigger execute after the

triggering DML statement (INSERT, UPDATE, DELETE)

executed. Triggering SQL statement is execute as soon as

followed by the code of trigger before performing Database

operation.

Types of Triggers
❖ ROW Trigger : ROW trigger fire for each and every record

which are performing INSERT, UPDATE, DELETE from the

database table. If row deleting is define as trigger event, then

trigger is fire, each time row is deleted from the table.

❖ Statement Trigger : Statement trigger fire only once for

each statement. If row deleting is define as trigger event, then

trigger is fire, as all five rows deleted from the table.

Types of Triggers
❖ Combination Trigger :Combination trigger are combination

of two trigger type:

Before Statement Trigger : Trigger fire only once for each

statement before the triggering DML statement.

Before Row Trigger : Trigger fire for each and every record

before the triggering DML statement.

After Statement Trigger : Trigger fire only once for each

statement after the triggering DML statement executing.

After Row Trigger : Trigger fire for each and every record

after the triggering DML statement executing.

Syntax of Trigger
CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

 FOR EACH ROW | FOR EACH STATEMENT [WHEN Condition]
DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Syntax of Trigger
❖ CREATE [OR REPLACE] TRIGGER trigger_name: It creates or replaces an

existing trigger with the trigger_name.

❖ {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be

executed. The INSTEAD OF clause is used for creating trigger on a view.

❖ {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

❖ [OF col_name]: This specifies the column name that would be updated.

❖ [ON table_name]: This specifies the name of the table associated with the trigger.

❖ [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old

values for various DML statements, like INSERT, UPDATE, and DELETE.

❖ [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be

executed for each row being affected. Otherwise the trigger will execute just once

when the SQL statement is executed, which is called a table level trigger.

❖ WHEN (condition): This provides a condition for rows for which the trigger would

fire. This clause is valid only for row level triggers

PL/SQL Trigger
❖ This trigger execute BEFORE to convert ename field

lowercase to uppercase.

CREATE or REPLACE TRIGGER trg1

 BEFORE

 INSERT ON emp1

 FOR EACH ROW

BEGIN

 :new.ename := upper(:new.ename);

END;

/

PL/SQL Trigger
This trigger is preventing to deleting row having eno as 1.

CREATE or REPLACE TRIGGER trg1

 BEFORE

 DELETE ON emp1

 FOR EACH ROW

BEGIN

 IF :old.eno = 1 THEN

 raise_application_error(20015, 'You can't delete this row');

 END IF;

END;

/

SQL>delete from emp1 where eno = 1;
Error Code: 20015
Error Name: You can't delete this row

PL/SQL Trigger
CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

PL/SQL Trigger
SQL>UPDATE customers SET salary = salary + 500

 WHERE id = 2;

❖ When a record is updated in the CUSTOMERS table, the

trigger, display_salary_changes will be fired and it will display

the following result −

Old salary: 1500

New salary: 2000

Salary difference: 500

 Exception
Syntax for Exception Handling
DECLARE
 <declarations section>
BEGIN
 <executable command(s)>
EXCEPTION
 <exception handling goes here >
 WHEN exception1 THEN
 exception1-handling-statements
 WHEN exception2 THEN
 exception2-handling-statements
 WHEN exception3 THEN
 exception3-handling-statements

 WHEN others THEN
 exception3-handling-statements
END;

 Exception
DECLARE
 c_id customers.id%type := 8;
 c_name customers.Name%type;
 c_addr customers.address%type;
BEGIN
 SELECT name, address INTO c_name, c_addr
 FROM customers WHERE id = c_id;
 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);
 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION
 WHEN no_data_found THEN
 dbms_output.put_line('No such customer!');
 WHEN others THEN
 dbms_output.put_line('Error!');
END;
/

Pre-defined Exception
Exception Description

ACCESS_INTO_NULL It is raised when a null object is automatically
assigned a value.

CASE_NOT_FOUND It is raised when none of the choices in the WHEN
clause of a CASE statement is selected, and there
is no ELSE clause.

INVALID_CURSOR It is raised when attempts are made to make a
cursor operation that is not allowed, such as
closing an unopened cursor.

LOGIN_DENIED It is raised when a program attempts to log on to
the database with an invalid username or
password.

ROWTYPE_MISMATCH It is raised when a cursor fetches value in a
variable having incompatible data type.

NOT_LOGGED_ON It is raised when a database call is issued without
being connected to the database.

User Defined Exception
DECLARE
 exp_name EXCEPTION;

BEGIN
 If condition then
 RAISE exp_name;
 End IF;

EXCEPTION
When exp_name then
 Statements;

END;

DECLARE
 c_id customers.id%type := &cc_id;
 c_name customerS.Name%type;
 c_addr customers.address%type;
 -- user defined exception
 ex_invalid_id EXCEPTION;
BEGIN
 IF c_id <= 0 THEN
 RAISE ex_invalid_id;
 ELSE
 SELECT name, address INTO c_name, c_addr
 FROM customers WHERE id = c_id;
 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);
 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);
 END IF;

EXCEPTION
 WHEN ex_invalid_id THEN
 dbms_output.put_line('ID must be greater than

zero!');
 WHEN no_data_found THEN
 dbms_output.put_line('No such customer!');
 WHEN others THEN
 dbms_output.put_line('Error!');
END;
/

 END
 of

 PL/SQL

