

Points to cover
 Protocol Standardization for IoT

 M2M and WSN Protocols

 RFID Protocol

 Modbus Protocol

 Zigbee Architecture

 IP based Protocols:

 MQTT (Secure)

 6LoWPAN

 LoRa.

 #Exemplar/Case Studies :LoRa based Smart Irrigation System.

Standardizing the IoT

 Smart objects produce large volumes of data.

 This data needs to be managed, processed, transferred
and stored securely.

 Standardization is the key to achieve universally
accepted specifications and protocols for true
interoperability between devices and applications.

 The use of standards:
ensures interoperable and cost-effective solutions

opens up opportunities in new areas

allows the market to reach its full potential

IoT Standardization Efforts
• The IoT- A (Internet of Things architecture) is

targeting a holistic(universal) architecture for all IoT

sectors.

• 17 European organizations from nine countries are a

part of IoT- A.

Protocol Standardization for IoT

• IoT-Architecture is one of the few efforts targeting a
holistic architecture for all IoT sectors

• This consortium consists of 17 European
organizations from nine countries

• Summarized current status of IoT
standardization as

• Fragmented architectures

• No holistic approach to implement IoT has yet been proposed

• Many island solutions do exist (RFID, sensor nets, etc.)

• Little cross-sector reuse of technology and exchange of
knowledge

Current IoT Standardization is
a problem, so…..
What could be Done to Solve
this???

Proposed Solution By IoT-A for
Standardization

 Create Architectural foundation for IoT, that will be

operable with future Internet

 Use Existing technologies instead of creating new

ones.

 Demonstrating the applicability of IoT in a set of use

cases

 Establish a strong stakeholder group to remove the

barriers and accept IoT on wide scale

 Combine various IoT technologies into a single entity

Groups doing IoT Standardization
 Work Package Framework (WPF)

 International Telecommunication Union

Standardization Sector(ITU-T)

 Internet Protocol for Smart Objects (IPSO)

Aim to form an open group of companies to market and

educate about how to use IP for IoT smart objects based on

an all- IP holistic approach

Work Package Framework
 An IoT framework is a set of tools, standards, and

protocols that provide a structure for developing and
deploying IoT applications and services.

 It typically includes hardware, software, networking
elements, device management, security, data
management, application development, and a cloud-
based platform

Work Package Framework
 The WPF divides the implementation standards of IoT into

hierarchical groups of tasks

Four Pillars of IoT

M2M
 Machine to Machine

 Enables flow of data between machines which
monitors data by means of sensors and at other end
extracts the information on gathered data and
processes it.

 Subset of IoT

 It uses WAN, GPRS, Cellular and Fixed N/w’s

M2M Architecture
 Components of M2M architecture are :

1)M2M Devices

2)M2M Area Network i.e Device Domain

3)M2M Gateway

4)M2M Communcation N/w’s : Network Domain
5)M2M Applications i.e Application Domain

M2M Architecture

M2M Devices

 Device that are capable of replying to request for data
contained within those devices or capable of
transmitting data autonomously are M2M Devices.

 Sensors and communication devices are the
endpoints of M2M applications.

Machine-to-Machine (M2M)
•Machine-to-Machine (M2M) refers to networking of machines

(or devices) for the purpose of remote monitoring and control
and data exchange.

Machine-to-Machine (M2M)

• An M2M area network comprises of machines (or M2M nodes)
which have embedded hardware modules for sensing, actuation
and communication.

• Various communication protocols can be used for M2M local area
networks such as ZigBee, Bluetooh, ModBus, M-Bus, Wirless M-
Bus, Power Line Communication (PLC), 6LoWPAN, IEEE 802.15.4,
etc.

• The communication network provides connectivity to remote
M2M area networks.

• The communication network can use either wired or wireless
networks (IP- based).

•While the M2M area networks use either proprietary or non-
IP based communication protocols, the communication
network uses IP-based networks.

M2M gateway
• Since non-IP based protocols are used within M2M area

networks, the M2M nodes within one network cannot
communicate with nodes in an external network.
• To enable the communication between remote M2M area

networks, M2M gateways are used.

Difference between IoT and M2M

•Communication Protocols
•M2M and IoT can differ in how the communication

between the machines or devices happens.
•M2M uses either proprietary or non-IP based

communication protocols for communication within the
M2M area networks.

• Machines in M2M vs Things in IoT
• The "Things" in IoT refers to physical objects that have

unique identifiers and can sense and communicate with
their external environment (and user applications) or their
internal physical states.
•M2M systems, in contrast to IoT, typically have

homogeneous machine types within an M2M area network.

Difference between IoT and M2M

•Hardware vs Software Emphasis
• While the emphasis of M2M is more on hardware with embedded

modules, the emphasis of IoT is more on software.
•Data Collection & Analysis
• M2M data is collected in point solutions and often in on-premises

storage infrastructure.
• In contrast to M2M, the data in IoT is collected in the cloud (can be public,

private or hybrid cloud).
•Applications
• M2M data is collected in point solutions and can be accessed by on-

premises applications such as diagnosis applications, service management
applications, and on- premisis enterprise applications.
• IoT data is collected in the cloud and can be accessed by cloud

applications such as analytics applications, enterprise applications, remote
diagnosis and management applications, etc.

Communication in IoT vs M2M

Primary Goal of M2M Communication

 To enable machines to interact and share information
autonomously, thereby improving operational
efficiency, reducing costs, and enhancing productivity.

 By facilitating seamless connectivity between devices,
M2M empowers organizations to remotely monitor and
manage assets, collect valuable data insights, and
automate routine tasks.

 Whether it's tracking inventory levels in a warehouse,
environmental monitoring in agricultural fields, or
optimizing energy usage in buildings with smart
metering solutions, M2M communication enables
smarter decision-making and proactive interventions.

M2M Protocols

 At the core of the success of M2M communication
within the broader landscape of IoT lies in the
protocols governing device interaction and data
exchange.

 These protocols, adapted for diverse applications and
network environments, are pivotal in ensuring
interoperability, reliability, and security.

 Among the notable M2M protocols are

MQTT (Message Queuing Telemetry Transport)

 CoAP (Constrained Application Protocol)

AMQP (Advanced Message Queuing Protocol)

1.MQTT
 Message Queuing Telemetry Transport

 A messaging protocol that allows devices to
communicate over the internet and is commonly used in
the Internet of Things (IoT)

 It's designed to be lightweight, easy to implement, and
efficient, making it ideal for use in resource-constrained
environments.

Key Features Of MQTT
 Origin : MQTT was originally named MQ TT, or MQ Telemetry Transport,

and was developed in the early 1990s.

 Publish/subscribe : MQTT uses a publish/subscribe (Pub/Sub) model,
where a sender (publisher) and receiver (subscriber) communicate through
topics. The MQTT broker filters messages and distributes them to the
subscribers.

 Low overhead : MQTT has a small code footprint and low power
consumption, making it ideal for devices with limited processing power and
battery life.

 Binary message format : MQTT uses a binary message format for
communication, which is different from other protocols like HTTP or SMTP
that use text-based formats.

 Security : MQTT supports SSL/TLS, which allows clients to log in using a
certificate. There are multiple TCP channels for different security levels,
including unencrypted, encrypted, and encrypted with a client certificate.

MQTT

 Notable for its lightweight and efficient messaging

 Extensively utilized in IoT applications where
bandwidth and power limitations are prevalent

 Publish-subscribe architecture allows devices to
subscribe to topics and receive relevant messages

 suitable for scenarios requiring real-time data updates
and event-triggered communication

What is MQTT? [AWS….]
 A standards-based messaging protocol, or set of rules,

used for machine-to-machine communication.

 Smart sensors, wearables, and other Internet of Things
(IoT) devices typically have to transmit and receive
data over a resource-constrained network with limited
bandwidth.

 These IoT devices use MQTT for data transmission, as
it is easy to implement and can communicate IoT data
efficiently.

 MQTT supports messaging between devices to the
cloud and the cloud to the device.

Why is the MQTT protocol important?
Benefits:
 Lightweight and efficient

 MQTT implementation on the IoT device requires minimal resources, so it can even
be used on small microcontrollers. For example, a minimal MQTT control message
can be as little as two data bytes. MQTT message headers are also small so that you
can optimize network bandwidth.

 Scalable
 MQTT implementation requires a minimal amount of code that consumes very little

power in operations. The protocol also has built-in features to support
communication with a large number of IoT devices. Hence, you can implement the
MQTT protocol to connect with millions of these devices.

 Reliable
 Many IoT devices connect over unreliable cellular networks with low bandwidth and

high latency. MQTT has built-in features that reduce the time the IoT device takes to
reconnect with the cloud. It also defines three different quality-of-service levels to
ensure reliability for IoT use cases— at most once (0), at least once (1), and exactly
once (2).

 Secure
 MQTT makes it easy for developers to encrypt messages and authenticate devices

and users using modern authentication protocols, such as OAuth, TLS1.3, Customer
Managed Certificates, and more.

 Well-supported
 Several languages like Python have extensive support for MQTT protocol

implementation. Hence, developers can quickly implement it with minimal coding
in any type of application.

PRINCIPLE BEHIND MQTT

 Space decoupling

 The publisher and subscriber are not aware of each
other’s network location and do not exchange
information such as IP addresses or port numbers.

 Time decoupling

 The publisher and subscriber don’t run or have network
connectivity at the same time.

 Synchronization decoupling

 Both publishers and subscribers can send or receive
messages without interrupting each other. For example,
the subscriber does not have to wait for the publisher to
send a message.

MQTT Components
1. MQTT client

 Any device from a server to a microcontroller that runs an MQTT library
 If the client is sending messages, it acts as a publisher, and if it is receiving messages, it

acts as a receiver.
 Basically, any device that communicates using MQTT over a network can be called an

MQTT client device.
2. MQTT broker

 The backend system which coordinates messages between the different clients
 Responsibilities of the broker include receiving and filtering messages, identifying

clients subscribed to each message, and sending them the messages.
 It is also responsible for other tasks such as:

 Authorizing and authenticating MQTT clients
 Passing messages to other systems for further analysis
 Handling missed messages and client sessions

3. MQTT connection
 Clients and brokers begin communicating by using an MQTT connection.
 Clients initiate the connection by sending a CONNECT message to the MQTT broker.
 The broker confirms that a connection has been established by responding with

a CONNACK message.
 Both the MQTT client and the broker require a TCP/IP stack to communicate. Clients

never connect with each other, only with the broker.

How does MQTT work?

1. An MQTT client establishes a connection with the
MQTT broker.

2. Once connected, the client can either publish
messages, subscribe to specific messages, or do both.

3. When the MQTT broker receives a message, it
forwards it to subscribers who are interested.

MQTT topic

 The term ‘topic’ refers to keywords the MQTT broker
uses to filter messages for the MQTT clients.

 Topics are organized hierarchically, similar to a file or
folder directory.

 For example, consider a smart home system operating in
a multilevel house that has different smart devices on
each floor.

 In that case, the MQTT broker may organize topics as:

ourhome/groundfloor/livingroom/light

ourhome/firstfloor/kitchen/temperature

MQTT publish

 MQTT clients publish messages that contain the topic
and data in byte format.

 The client determines the data format such as text
data, binary data, XML, or JSON files.

 For example, a lamp in the smart home system may
publish a message on for the topic

livingroom/light

MQTT subscribe

 MQTT clients send a SUBSCRIBE message to the
MQTT broker, to receive messages on topics of
interest.

 This message contains a unique identifier and a list of
subscriptions.

 For example, the smart home app on your phone wants
to display how many lights are on in your house.

 It will subscribe to the topic light and increase the
counter for all on messages.

What is MQTT over WSS?

 MQTT over WebSockets (WSS) is an MQTT
implementation to receive data directly into a web
browser.

 The MQTT protocol defines a JavaScript client to
provide WSS support for browsers.

 In this case, the protocol works as usual but it adds
additional headers to the MQTT messages to also
support the WSS protocol.

 Think of it as the MQTT message payload wrapped in
a WSS envelope.

2.CoAP : What Is The CoAP Protocol?

 Constrained Application Protocol

 A specialized internet application protocol for constrained devices.

 It was designed to allow small, low-power devices to join the Internet
of Things (IoT).

 The protocol allows these devices to communicate with the wider
Internet using minimal resources.

 A small base specification that can be extended with additional
functionality when needed.

 It operates over UDP and provides a request/response interaction
model between application endpoints, enabling interoperability
among different types of devices.

 Highly reliable, with mechanisms in place to ensure message delivery,
even in cases of limited network connectivity or device power.

 This makes it suitable for IoT devices, which often operate in
challenging network environments.

Key Features of CoAP

 RESTful Architecture

 Built-In Discovery

 Asynchronous Message Exchanges

 Optional Reliability with Confirmable Messages

RESTful Architecture

 CoAP uses a RESTful (Representational State Transfer)
architecture.

 It follows a set of constraints that allow it to operate
efficiently over a large, distributed network.

 In a RESTful system, data and functionality are
considered resources, and these resources are accessed
using a standard, uniform interface.

Built-In Discovery

 The CoAP protocol’s built-in discovery mechanism allows
devices to discover resources on other devices without
requiring any prior knowledge of their existence.

 This is especially useful in IoT networks, where devices
may be constantly joining and leaving the network.

 The built-in discovery feature in CoAP is achieved through
the use of a well-known 'core' resource that provides a list
of available resources on a device.

 This resource can be queried by other devices on the
network, allowing them to discover what resources are
available and how to interact with them.

Asynchronous Message Exchanges

 CoAP supports asynchronous message exchanges, which is
crucial for IoT networks where devices may not always be
connected or available.

 With asynchronous message exchanges, a device can send a
request to another device and then continue with other tasks
without waiting for a response.

 The response can be processed once it arrives, even if delayed.

 This feature uses a message identifier in each CoAP message,
which allows a device to match responses with requests.

 This, in conjunction with the ability to retransmit lost
messages, ensures a high level of reliability in message
exchanges.

Optional Reliability with Confirmable Messages

 CoAP offers optional reliability through the use of
confirmable messages.

 When a device sends a confirmable message, it expects
an acknowledgement from the recipient.

 If no acknowledgement is received within a certain time,
the message is retransmitted.

 This feature allows CoAP to provide reliable
communication in environments where network
connectivity is unreliable.

 Devices can ensure that critical messages are received
and processed.

Use Cases of CoAP

 Smart Home Automation

 Industrial IoT

 Wearables and Healthcare

 Energy Management

Pros of CoAP Protocol

 Lightweight

 Fast

 Efficient Encoding

 Stateless Communication

Cons of CoAP Protocol
 Less Mature than Alternatives :

 less mature than some of its alternatives, such as HTTP and MQTT.
 This means that there are fewer resources available for developers, such as

libraries and tools, which can make the development process more
challenging.

 NAT Traversal :
 Network Address Translation
 Because it uses UDP, which does not establish a connection before sending

data, CoAP can have issues with NAT traversal, as the router may not
know where to send the response.

 To overcome this issue, the CoAP protocol needs to use techniques such as
UDP hole punching, which can be complex and resource-intensive.

 Fragmentation:
 occurs when a message is too large to fit into a single packet and needs to

be divided into smaller fragments.
 This can increase the complexity of the protocol and decrease its

efficiency.
 the loss of a single fragment can result in the loss of the entire message.

This can be particularly problematic in unreliable networks, where packet
loss is common.

CoAP vs. MQTT

Feature MQTT CoAP

Purpose Messaging and
communication in IoT

Designed for resource-
constrained devices in IoT

Transport Protocol TCP (Transmission Control
Protocol)

UDP (User Datagram
Protocol)

Communication Style Publish/Subscribe model Request/Response model

Header Size 2 bytes fixed header 4 bytes fixed header

Payload Format Supports binary and text
payloads

Supports binary and text
payloads

QoS (Quality of
Service)

Levels 0, 1, and 2 for
message delivery

Reliability through
"confirmable" and "non-
confirmable" messages

Message Types Publish, Subscribe,
Connect, Disconnect, etc.

GET, POST, PUT, DELETE,
etc.

Feature MQTT CoAP

Resource
Discovery

Not inherent, requires
additional mechanisms

Built-in resource discovery
through CoRE Link Format

Security Supports SSL/TLS for
encryption and authentication

Datagram Transport Layer
Security (DTLS) for secure
communication

Connection
Overhead

Maintains persistent
connections

Lightweight connection setup

Scalability Well-suited for large-scale
deployments

Designed for constrained
devices and networks

Header
Compression

No built-in header compression Uses CoAP-specific header
compression

Message
Compression

Supports message payload
compression

Supports message payload
compression

Use Cases Wide range of IoT applications Constrained devices with
limited resources

CoAP vs. MQTT

3. AMQP (Advanced Message Queuing Protocol)

 AMQP is the Internet Protocol for Messaging

 The Advanced Message Queuing Protocol (AMQP) is
an open standard for passing business messages
between applications or organizations.

 It connects systems, feeds business processes with the
information they need and reliably transmits onward
the instructions that achieve their goals.

What is AMQP?

 Advanced Message Queuing Protocol

 It is a protocol that is used for communication
between applications.

 It is a lightweight, protocol that supports the
applications for data transfer.

 This protocol is used for its scalability and modularity
with the technologies.

Components of AMQP

 Exchanges: The exchange is responsible for fetching messages
and properly arranging them in the appropriate queue

 Channel: A channel is a multiplexed virtual connection between
AMQP peers that is built into an existing connection.

 Message Queue: It is a unique entity that connects messages to
their resources or points.

 Binding: Bindings are a set of predetermined instructions for
queuing and exchanging. It manages message transmission and
delivery.

 Virtual Host: Vhost is a platform that provides isolation
capabilities within the broker. Multiple vhosts may be functional
at the same time, depending on the users and their access rights.

 Layers of AMQP

Layers of AMQP

 Function Layer: The function layer handles basic file
transfer transactions, message queues, access, and
control streaming.

 Transport layer: Framing content data representation
and error management.

AMQP Key Capabilities

AMQP connects across:

 Organizations – applications in different organizations

 Technologies – applications on different platforms

 Time – systems don’t need to be available simultaneously
 Space – reliably operate at a distance, or over poor

networks

AMQP Key Features

 Security

 Reliability

 Interoperability

 Standard

 Open

Wireless Sensor Network (WSN)

 An infrastructure-less wireless network that is deployed in
a large number of wireless sensors in an ad-hoc manner
that is used to monitor the system, physical, or
environmental conditions.

 Sensor nodes are used in WSN with the onboard processor
that manages and monitors the environment in a particular
area.

 They are connected to the Base Station which acts as a
processing unit in the WSN System.

 The base Station in a WSN System is connected through
the Internet to share data. WSN can be used for processing,
analysis, storage, and mining of the data.

Wireless Sensor Network Architecture

Wireless Sensor Network Architecture

A Wireless Sensor Network (WSN) architecture is structured into
three main layers:

 Physical Layer: This layer connects sensor nodes to the base
station using technologies like radio waves, infrared, or Bluetooth.
It ensures the physical communication between nodes and the
base station.

 Data Link Layer: Responsible for establishing a reliable
connection between sensor nodes and the base station. It uses
protocols such as IEEE 802.15.4 to manage data transmission and
ensure efficient communication within the network.

 Application Layer: Enables sensor nodes to communicate specific
data to the base station. It uses protocols like ZigBee to define how
data is formatted, transmitted, and received, supporting various
applications such as environmental monitoring or industrial
control.

 These layers work together to facilitate the seamless
operation and data flow within a Wireless Sensor
Network, enabling efficient monitoring and data
collection across diverse applications.

Advantages of WSN
 Low cost: WSNs consist of small, low-cost sensors that are easy to

deploy, making them a cost-effective solution for many
applications.

 Wireless communication: WSNs eliminate the need for wired
connections, which can be costly and difficult to install. Wireless
communication also enables flexible deployment and
reconfiguration of the network.

 Energy efficiency: WSNs use low-power devices and protocols to
conserve energy, enabling long-term operation without the need
for frequent battery replacements.

 Scalability: WSNs can be scaled up or down easily by adding or
removing sensors, making them suitable for a range of applications
and environments.

 Real-time monitoring: WSNs enable real-time monitoring of
physical phenomena in the environment, providing timely
information for decision making and control.

Disadvantages of WSN
 Limited range: The range of wireless communication in WSNs is

limited, which can be a challenge for large-scale deployments or in
environments with obstacles that obstruct radio signals.

 Limited processing power: WSNs use low-power devices, which may
have limited processing power and memory, making it difficult to
perform complex computations or support advanced applications.

 Data security: WSNs are vulnerable to security threats, such as
eavesdropping, tampering, and denial of service attacks, which can
compromise the confidentiality, integrity, and availability of data.

 Interference: Wireless communication in WSNs can be susceptible to
interference from other wireless devices or radio signals, which can
degrade the quality of data transmission.

 Deployment challenges: Deploying WSNs can be challenging due to
the need for proper sensor placement, power management, and
network configuration, which can require significant time and
resources.
 while WSNs offer many benefits, they also have limitations and

challenges that must be considered when deploying and using them in
real-world applications.

M2M and WSN Protocols

• Most M2M applications are developed today in a highly
customized fashion

• High-level M2M architecture from M2M
Standardization Task Force (MSTF) does include
fixed & other non cellular wireless networks

 Means it’s generic, holistic IoT architecture even
though it is M2M architecture

• M2M and IoT sometimes are used interchangeably
in the United States

M2M and WSN Protocols

• Other M2M standards activities include:

• Data transport protocol standards - M2MXML, JavaScript Object Notation

(JSON), BiTXML, WMMP, MDMP

• Extend OMA [Open Mobile Alliance] DM [Device Management] to

support M2M devices protocol management objects

• M2M device management, standardize M2M gateway

• M2M security and fraud detection

• Network API’s M2M service capabilities

• Remote management of device behind gateway/firewall

• Open REST-based API for M2M applications

Internet Protocol for Smart Objects

• The IPSO Alliance is an open, informal and
thought-leading association of like-minded
organizations and individuals that promote the
value of using the Internet Protocol for the
networking of Smart Objects.

• IP Stack can easily run on tiny, battery operated
embedded devices as it is long-lived and stable
technology.

• The role of the alliance is to ensure how IPv4,
IPv6, and 6LoWPAN are used, deployed and
provided to all potential users.

Internet Protocol for Smart Objects

• Mobile IP is an approach by IETF (Internet

Engineering Task Force) which manages the

movement of mobile devices over IPV4 and IPV6

M2M Standardization Efforts

M2M Standardization Task Force (MSTF) coordinate
the efforts of individual standards development

organizations (SDO)for M2M Applications

These define a conceptual framework for M2M
applications and specify a service layer that will enable
application developers to create applications that
operate transparently across different vertical domains

M2M Standardization Efforts

M2M standards activities include the

following

• Use JSON as Data Transport Format

• Resolve IP addressing issues for devices IPV6

• Use Open REST- based API for M2M applications

• Remote management of devices behind a gateway
or firewall be done

• Fix the charging standars

WSN Standardization Efforts

There are number of standardization

bodies in the field of WSNs

The IEEE focuses on the physical and
MAC layers

IETF works on layers 3 and above.

WSN Standardization Efforts

IEEE 1451 is a set of smart transducer interface standards developed

by the IEEE Instrumentation and Measurement Society’s Sensor
Technology Technical

common, network-

Committee that describe a set of open,

independent communication interfaces for
connecting sensors or actuators) to microprocessors, instrumentation

systems, and control/field networks

The goal of the IEEE 1451 family of standards is to allow the

access of transducer data through a common set of interfaces

whether the transducers are connected to systems or networks

via a wired or wireless means

WSN Standardization Efforts …IEEE
1451 Activities

1451.0-2007 Common Functions, Communication

Protocols

1451.1-1999 Network Capable Application Processor
Information Model

1451.2-1997 Transducer to Microprocessor
Communication Protocols

1451.3-2003 Digital Communication Formats for
Distributed Multi- drop Systems

WSN Standardization Efforts …
IEEE 1451 Activities

1451.4-2004 Mixed- mode Communication Protocols

1451.5-2007 Wireless Communication Protocols

1451.7-2010 Transducers to Radio Frequency Identification

(RFID) Systems Communication Protocols

SCADA and RFID Protocols
• Supervisory Control And Data Acquisition

• One of the IoT pillars to represent the whole
industrial automation arena

• IEEE created standard specification called Std
C37.1™, for SCADA & automation systems in 2007

• In recent years, network-based industrial
automation has greatly evolved

• With the use of intelligent electronic devices (IEDs),
or IoT devices in our terms, in substations and
power stations

SCADA and RFID Protocols

SCADA and RFID Protocols
• The processing is now distributed

• Functions that used to be done at control center
can now be done by IED i.e. M2M between devices

• Due to restructuring of electric industry, traditional
vertically integrated electric utilities are replaced by
many entities such as

• GENCO (Generation Company),

• TRANSCO (Transmission Company),

• DISCO (Distribution Company),

• ISO (Independent System Operator), etc.

Issues with IoT Standardization
• It should be noted that not everything about

standardization is positive

• Standardization is like a double-edged sword:

• Critical to market development

• But it may threaten innovation and inhibit change when
standards are accepted by the market

• Standardization and innovation are like yin & yang

• They could be contradictory to each other in some
cases, even though this observation is debatable

20 March 2018 Unit 4 - IoT Protocols and Security

Issues with IoT Standardization

• Different consortia, forums and alliances have been
doing standardization in their own limited scope

• For example, 3GPP covers only cellular wireless
networks while EPCglobal’s middleware covers only
RFID events

• Even within same segment, there are more than
one consortium or forum doing standardization
without enough communication with each other

• Some are even competing with each other

Issues with IoT Standardization
• Some people believe that the IoT concept is well

established

• However, some gray zones remain in the definition,
especially which technology should be included

• Following two issues for IoT standardization in
particular and ICT standardization in general may
never have answers:

Issues with IoT Standardization
1. ICT standardization is a highly decentralized

activity. How can the individual activities of the
network of extremely heterogeneous standards-
setting bodies be coordinated?

2. It will become essential to allow all interested
stakeholders to participate in the standardization
process toward the IoT and to voice their
respective requirements and concerns. How can
this be achieved?

Unified Data Standards
• Already discussed about two pillars of the Internet

• HTML/HTTP combination of data format and
exchange protocol is the foundation pillar of WWW

• Described great number of data standards and
protocols proposed for four pillar domains of IoT

• Many issues still impede the development of IoT
and especially WoT vision

20 March 2018 Unit 4 - IoT Protocols and Security

Unified Data Standards
• Many standardization efforts have been trying to

define unified data representation, protocol for IoT

• Before IoT, Internet was actually an Internet of
documents or of multimedia documents

• Two pillars of Internet including HTML/HTTP turned
the Internet into WWW

• We need to turn the IoT into the WoT

• What will it take to make this to happen?

Unified Data Standards
• Do we need a new HTML/HTTP-like standard for

MTC and WoT? If there is no need to reinvent the
wheel, what extensions do we need to build on top
of HTML/HTTP or HTML5?

• Browser is intended for humans, so do we need new
browser for machines to make sense of ocean of
machine-generated data? If not, what extensions
do we need to make to the existing browsers?

Unified Data Standards
• Today, most new protocols are built on top of XML.

For OS there must be XML-based data format
standards or a metadata standard to represent the
machine-generated data (MGD). Is it possible to
define such a metadata standard that covers
everything?

Unified Data Standards
• There are many different levels of protocols

• But the ones that most directly relate to business
and social issues are the ones closest to the top

• so-called application protocols such as HTML/HTTP
for the web

• Web has always been visual medium, but restricted

• Until recently, HTML developers were limited to CSS
& JavaScript in order to produce animations

• Or they would have to rely on a plug-in like Flash

Unified Data Standards

