3
1

Merge remote-tracking branch 'origin/main'

This commit is contained in:
K 2024-11-03 23:06:36 +05:30
commit 3abe4f123d
Signed by: notkshitij
GPG Key ID: C5B8BC7530F8F43F

View File

@ -1,116 +1,110 @@
#include <iostream> #include<iostream>
#include <queue> #include<queue>
#include <vector>
#include <iomanip> // For formatting output
using namespace std; using namespace std;
struct process { struct Process{
int burst, arrival, id, completion, priority, waiting, turnaround, response, remainingBurst; int id, burst, arrival, remaining, completion, waiting, turnaround, response;
bool active;
}; };
Process processes[30];
process meh[30]; class RoundRobin{
class RoundRobin {
public: public:
int n; int n, timeQuantum;
int timeQuantum;
void inputProcesses() { void input(){
cout << "\nEnter number of processes: "; cout<<"\nEnter number of processes: ";
cin >> n; cin>>n;
for (int i = 1; i <= n; i++) { for(int i = 0; i < n; i++){
cout << "\nEnter arrival time of P" << i << ": "; cout<<"\nEnter arrival time of P"<<i<<": ";
cin >> meh[i].arrival; cin>>processes[i].arrival;
cout << "\nEnter burst time of P" << i << ": "; cout<<"Enter burst time of P"<<i<<": ";
cin >> meh[i].burst; cin>>processes[i].burst;
cout << "\nEnter priority of P" << i << ": "; processes[i].id = i;
cin >> meh[i].priority; // Priority is not used in RR, but kept here for completeness. processes[i].remaining = processes[i].burst;
meh[i].id = i; processes[i].response = -1;
meh[i].remainingBurst = meh[i].burst;
meh[i].active = false;
} }
cout << "\nEnter time quantum: "; cout<<"\nEnter time quantum: ";
cin >> timeQuantum; cin>>timeQuantum;
cout << "\n | Arrival | Burst | Priority\n"; }
for (int j = 1; j <= n; j++) {
cout << "P" << j << " | " << meh[j].arrival << " | " << meh[j].burst << " | " << meh[j].priority << "\n"; void process(){
int currentTime = 0;
queue<int> q;
bool inQueue[30] = {false};
int completedProcesses = 0;
for(int i = 0; i < n; i++){
if(processes[i].arrival <= currentTime){
q.push(i);
inQueue[i] = true;
} }
} }
void roundRobinProcess() { while(completedProcesses < n){
int k = 0; // Current time if(q.empty()){
int completed = 0; // Number of completed processes currentTime++;
queue<int> readyQueue; for(int i = 0; i < n; i++){
if(!inQueue[i] && processes[i].arrival <= currentTime){
vector<bool> isProcessed(n + 1, false); // Track whether a process has been added to the ready queue q.push(i);
inQueue[i] = true;
while (completed < n) {
// Add processes that have arrived to the ready queue
for (int i = 1; i <= n; i++) {
if (meh[i].arrival <= k && !isProcessed[i]) {
readyQueue.push(i);
isProcessed[i] = true;
} }
} }
if (readyQueue.empty()) {
// If no process is in the queue, increment time
k++;
continue; continue;
} }
int currentProcess = readyQueue.front(); int idx = q.front();
readyQueue.pop(); q.pop();
// Calculate response time for the process if it starts now if(processes[idx].response == -1){
if (!meh[currentProcess].active) { processes[idx].response = currentTime - processes[idx].arrival;
meh[currentProcess].response = k - meh[currentProcess].arrival;
meh[currentProcess].active = true;
} }
int timeSlice = min(timeQuantum, meh[currentProcess].remainingBurst); if(processes[idx].remaining <= timeQuantum){
currentTime += processes[idx].remaining;
processes[idx].remaining = 0;
processes[idx].completion = currentTime;
processes[idx].turnaround = processes[idx].completion - processes[idx].arrival;
processes[idx].waiting = processes[idx].turnaround - processes[idx].burst;
completedProcesses++;
}else{
currentTime += timeQuantum;
processes[idx].remaining -= timeQuantum;
}
// Process the current process for(int i = 0; i < n; i++){
meh[currentProcess].remainingBurst -= timeSlice; if(!inQueue[i] && processes[i].arrival <= currentTime && processes[i].remaining > 0){
k += timeSlice; q.push(i);
inQueue[i] = true;
}
}
if (meh[currentProcess].remainingBurst == 0) { if(processes[idx].remaining > 0){
meh[currentProcess].completion = k; q.push(idx);
meh[currentProcess].turnaround = meh[currentProcess].completion - meh[currentProcess].arrival;
meh[currentProcess].waiting = meh[currentProcess].turnaround - meh[currentProcess].burst;
completed++;
} else {
// If the process is not finished, re-add it to the queue
readyQueue.push(currentProcess);
} }
} }
} }
void displayMetrics() { void displayMetrics(){
double totalWaiting = 0, totalTurnaround = 0, totalCompletion = 0; double totalWaiting = 0, totalTurnaround = 0, totalCompletion = 0;
cout << "\n\n | Completion time | Waiting time | Turnaround time | Response time\n"; cout<<"\n\n | Completion time | Waiting time | Turnaround time | Response time\n";
for (int j = 1; j <= n; j++) { for(int i = 0; i < n; i++){
totalWaiting += meh[j].waiting; totalWaiting += processes[i].waiting;
totalTurnaround += meh[j].turnaround; totalTurnaround += processes[i].turnaround;
totalCompletion += meh[j].completion; totalCompletion += processes[i].completion;
cout << "P" << j << " | " << setw(15) << meh[j].completion cout<<"P"<< processes[i].id<<" | "<<processes[i].completion<<" | "<< processes[i].waiting<<" | "<<processes[i].turnaround<<" | "<<processes[i].response<<"\n";
<< " | " << setw(12) << meh[j].waiting
<< " | " << setw(15) << meh[j].turnaround
<< " | " << setw(12) << meh[j].response << "\n";
} }
cout << "\nAverage completion time: " << totalCompletion / n; cout<<"\nAverage completion time: "<<totalCompletion/n;
cout << "\nAverage waiting time: " << totalWaiting / n; cout<<"\nAverage waiting time: "<<totalWaiting/n;
cout << "\nAverage turnaround time: " << totalTurnaround / n; cout<<"\nAverage turnaround time: "<<totalTurnaround/n;
} }
}; };
int main() { int main(){
RoundRobin obj; RoundRobin rr;
obj.inputProcesses(); rr.input();
obj.roundRobinProcess(); rr.process();
obj.displayMetrics(); rr.displayMetrics();
return 0; return 0;
} }