
Assignment No-01

MES Wadia College of Engineering Pune-01

Department of Computer Engineering

Name of Student: Class:

Semester/Year: Roll No:

Date of Performance: Date of Submission:

Examined By: Experiment No: Group A-03

Group A ASSIGNMENT NO: 03

AIM: Write a program to create Dynamic Link Library for any mathematical operation and write

an application program to test it. (Java Native Interface / Use VB or VC++).

OBJECTIVES:

• To study how to create and use dynamic link library in a java program by using java

native interface(JNI).

PRE-REQUISITES:

1. Basics of dynamic linking.

2. Any Java Native Interface.

APPARATUS:

THEORY:

Linking:

Linking is the process of bringing external programs together required by the one we

write for its successful execution. Static and dynamic linking are two processes of collecting and

combining multiple object files in order to create a single executable.

Static link library:

In computer science, a static library or statically-linked library is a set of routines,

external functions and variables which are resolved in a caller at compile-time and copied into a

target application by a compiler, linker, or binder, producing an object file and a stand-alone

executable. This executable and the process of compiling it are both known as a static build of

the program. Historically, libraries could only be static. Static libraries are either merged with

other static libraries and object files during building/linking to form a single executable or loaded

Department of Computer Engineering Page 1

Assignment No-01

at run-time into the address space of their corresponding executable at a static memory offset

determined at compile-time/link-time.

Dynamic loading is a mechanism by which a computer program can, at run time, load a library

(or other binary) into memory, retrieve the addresses of functions and variables contained in the

library, execute those functions or access those variables, and unload the library from memory.

Following are the major differences between static and dynamic linking:

Static Linking Dynamic Linking

1

Static linking is the process of copying all
library modules used in the program into the
final executable image. This is performed by
the linker and it is done as the last step of the
compilation process. The linker combines
library routines with the program code in
order to resolve external references, and to
generate an executable image suitable for
loading into memory. When the program is
loaded, the operating system places into
memory a single file that contains the
executable code and data. This statically
linked file includes both the calling program
and the called program.

In dynamic linking the names of the
external libraries (shared libraries) are
placed in the final executable file while the
actual linking takes place at run time when
both executable file and libraries are
placed in the memory. Dynamic linking
lets several programs use a single copy of
an executable module.

2
Static linking is performed by programs
called linkers as the last step in compiling a
program. Linkers are also called link editors.

Dynamic linking is performed at run time
by the operating system.

3

Statically linked files are significantly larger
in size because external programs are built
into the executable files.

In dynamic linking only one copy of
shared library is kept in memory. This
significantly reduces the size of executable
programs, thereby saving memory and
disk space.

4

In static linking if any of the external
programs has changed then they have to be
recompiled and re-linked again else the
changes won't reflect in existing executable
file.

In dynamic linking this is not the case and
individual shared modules can be updated
and recompiled. This is one of the greatest
advantages dynamic linking offers.

5
Statically linked program takes constant load
time every time it is loaded into the memory
for execution.

In dynamic linking load time might be
reduced if the shared library code is
already present in memory.

6 Programs that use statically-linked libraries
are usually faster than those that use shared

Programs that use shared libraries are
usually slower than those that use

Department of Computer Engineering Page 2

Assignment No-01

libraries. statically-linked libraries.

7

In statically-linked programs, all code is
contained in a single executable module.
Therefore, they never run into compatibility
issues.

Dynamically linked programs are
dependent on having a compatible library.
If a library is changed (for example, a new
compiler release may change a library),
applications might have to be reworked to
be made compatible with the new version
of the library. If a library is removed from
the system, programs using that library
will no longer work.

Java Native Interface (JNI)

At times, it is necessary to use native codes (C/C++) to overcome the memory

management and performance constraints in Java. Java supports native codes via the Java Native

Interface (JNI). JNI is difficult, as it involves two languages and runtimes.

• An interface that allows Java to interact with code written in another language

• Motivation for JNI

 Code reusability

 Reuse existing/legacy code with Java (mostly C/C++)

 Performance

 Native code used to be up to 20 times faster than Java, when running in

interpreted mode

 Modern JIT compilers (HotSpot) make this a moot point

 Allow Java to tap into low level O/S, H/W routines

• JNI code is not portable!

JNI Components

 javah - JDK tool that builds C-style header files from a given Java class that includes

native methods

 Adapts Java method signatures to native function prototypes

 jni.h - C/C++ header file included with the JDK that maps Java types to their native

counterparts

 javah automatically includes this file in the application header files

Department of Computer Engineering Page 3

Assignment No-01

JNI Basics

JNI defines the following JNI types in the native system that correspond to Java types:

1. Java Primitives: jint, jbyte, jshort, jlong, jfloat, jdouble, jchar,

jboolean for Java Primitive of int, byte, short, long, float, double, char

and boolean, respectively.

2. Java Reference Types: jobject for java.lang.Object. It also defines the

following sub-types:

1. jclass for java.lang.Class.

2. jstring for java.lang.String.

3. jthrowable for java.lang.Throwable.

4. jarray for Java array. Java array is a reference type with eight primitive array

and one Object array. Hence, there are eight array of primitives jintArray,

jbyteArray, jshortArray, jlongArray, jfloatArray,

jdoubleArray, jcharArray and jbooleanArray; and one object array

jobjectArray.

The native programs:

1. Receive the arguments in JNI type (passed over by the Java program).

2. For reference JNI type, convert or copy the arguments to local native types, e.g.,

jstring to a C-string, jintArray to C's int[], and so on. Primitive JNI types such

as jint and jdouble do not need conversion and can be operated directly.

3. Perform its operations, in local native type.

4. Create the returned object in JNI type, and copy the result into the returned object.

5. Return.

JNI with C

Java code for loading the libraries:

static {

 System.loadLibrary("myLibrary");
}

Step 1: Write a Java Class that uses C Codes - HelloJNI.java

1
2
3
4
5
6
7
8
9
10

public class HelloJNI {
 static {
 System.loadLibrary("hello"); // Load native library at runtime
 // hello.dll (Windows) or libhello.so
(Unixes)
 }

 // Declare a native method sayHello() that receives nothing and returns
void
 private native void sayHello();

Department of Computer Engineering Page 4

Assignment No-01

11
12
13
14

 // Test Driver
 public static void main(String[] args) {
 new HelloJNI().sayHello(); // invoke the native method
 }
}

The static initializer invokes System.loadLibrary() to load the native library "Hello"

(which contains the native method sayHello()) during the class loading. It will be mapped to

"hello.dll" in Windows; or "libhello.so" in Unixes. This library shall be included in

Java's library path (kept in Java system variable java.library.path); otherwise, the

program will throw a UnsatisfiedLinkError. You could include the library into Java

Library's path via VM argument -Djava.library.path=path_to_lib.

Next, we declare the method sayHello() as a native instance method, via keyword native,

which denotes that this method is implemented in another language. A native method does not

contain a body. The sayHello() is contained in the native library loaded.

The main() method allocate an instance of HelloJNI and invoke the native method

sayHello().

Compile the "HelloJNI.java" into "HelloJNI.class".

> javac HelloJNI.java

Step 2: Create the C/C++ Header file - HelloJNI.h

Run javah utility on the class file to create a header file for C/C++ programs:

> javah HelloJNI

The output is HelloJNI.h as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class HelloJNI */

#ifndef _Included_HelloJNI
#define _Included_HelloJNI
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: HelloJNI
 * Method: sayHello
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_HelloJNI_sayHello(JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

Department of Computer Engineering Page 5

Assignment No-01

The header declares a C function Java_HelloJNI_sayHello as follows:

JNIEXPORT void JNICALL Java_HelloJNI_sayHello(JNIEnv *, jobject);

The naming convention for C function is

Java_{package_and_classname}_{function_name}(JNI arguments). The dot

in package name shall be replaced by underscore.

The arguments:

• JNIEnv *env: Is a pointer that points to another pointer pointing to a function table

(array of pointer). Each entry in this function table points to a JNI function. These are the

functions we are going to use for type conversion

• The second argument is different depending on whether the native method is a static

method or an instance method

 Instance method: It will be a jobject argument which is a reference to the object on

which the method is invoked

 Static method: It will be a jclass argument which is a reference to the class in

which the method is define

We are not using these arguments in the hello-world example, but will be using them later. Ignore

the macros JNIEXPORT and JNICALL for the time being.

The extern "C" is recognized by C++ compiler only. It notifies the C++ compiler that these

functions are to be compiled using C's function naming protocol (instead of C++ naming

protocol). C and C++ have different function naming protocols as C++ support function

overloading and uses a name mangling scheme to differentiate the overloaded functions.

Step 3: C Implementation - HelloJNI.c

1
2
3
4
5
6
7
8
9

#include <jni.h>
#include <stdio.h>
#include "HelloJNI.h"

// Implementation of native method sayHello() of HelloJNI class
JNIEXPORT void JNICALL Java_HelloJNI_sayHello(JNIEnv *env, jobject thisObj) {
 printf("Hello World!\n");
 return;
}

$ gcc -shared -fPIC -I/usr/lib/jvm/default-java/include -I/usr/lib/jvm/default-

java/include/linux HelloWorld.c -o libHelloWorld.so

-I: for specifying the header files directories. In this case "jni.h" (in

"<JAVA_HOME>\include") and "jni_md.h" (in "<JAVA_HOME>\include\linux"),

where <JAVA_HOME> denotes the JDK installed directory. Enclosed the directory in double

quotes if it contains spaces.

Department of Computer Engineering Page 6

Assignment No-01

• -shared: to generate share library.

• -o: for setting the output filename "libHelloWorld.so".

How to Load a Java Native/Shared Library (.so)

1. Call System.load to load the .so from an explicitly specified absolute path.

2. Copy the shared library to one of the paths already listed in java.library.path

3. Modify the LD_LIBRARY_PATH environment variable to include the directory where

the shared library is located.

4. Specify the java.library.path on the command line by using the -D option.

Steps to run a program on terminal

admin1@admin1:~/HelloWorld$ javac HelloWorld.java

admin1@admin1:~/HelloWorld1$ javah -classpath . HelloWorld

admin1@admin1:~/HelloWorld1$ gcc -shared -fPIC -I/usr/lib/jvm/default-java/include
-I/usr/lib/jvm/default-java/include/linux HelloWorld.c -o libHelloWorld.so

admin1@admin1:~/HelloWorld1$ java -classpath . -Djava.library.path=. HelloWorld
Hello World!

CONCLUSION:

QUESTIONS:

1. Explain linking with example.

2. Explain loading with example.

3. What are the advantages of dynamic linking library?

4. What are the advantages and disadvantages of static linking library?

Department of Computer Engineering Page 7

	Java Native Interface (JNI)
	JNI Components
	JNI Basics
	JNI with C

	How to Load a Java Native/Shared Library (.so)

