

Unit- I
Course Outcome

SPOS

To analyze & synthesize various
system software & understand the
design of two pass assemblers.

Unit- I
Introduction

SPOS

● System is Collection of Component. e.g.College

● Programming is way to instruct the computer to perform various task.

● system programming is an art of designing and implementing system
Programs

Unit- I
Outline

SPOS

Introduction

Software

Assemblers

Unit- I

SPOS

instruct

Component

System
is

Collection

of

eg.
College

Programming
is

Way to

compute
the

Various Task

To perform

system programming is an art of designing and implementing system Programs.

System introduction

Unit- I
 Software Hierarchy

SPOS

Software

Collection

is

of

Many
Programs

Software

System
Software

Application
Software

assist general
user application

Operating System

Assembler

software developed
for the specific goal

Media player

Adobe Reader

Foundation of system Programming

General Machine Structure

Hardware Management:

● System software, particularly the operating system (OS), acts as an intermediary between
the hardware and the user. It manages hardware resources such as the CPU, memory,
storage devices, and input/output devices.

● It ensures efficient and fair allocation of resources among various applications.

Application Support:

● Provides a platform for running application software.
● Offers necessary services and libraries required by applications to function correctly.

Network Management:

● Facilitates networking capabilities, enabling communication between computers and other
devices.

● Manages network connections, data transmission, and network security.

Need Of System Software

Device Drivers:

● Includes device drivers that facilitate communication between the OS and hardware devices.
● Ensures proper functioning and compatibility of peripheral devices like printers, scanners, and

network adapters.

Software Updates and Maintenance:

● Handles software updates, patches, and maintenance tasks to keep the system secure and
up-to-date.

● Ensures that the system software remains compatible with new hardware and applications.

File Management:

● Organizes and manages files on storage devices.
● Provides functionalities like file creation, deletion, reading, writing, and permissions

management.

Need Of System Software

Unit- I

SPOS

System Program

Required

Effective Execution

General user Programs

Computer System

are

for

of

on

System Programming

designing and implementing
system programs

Is an art of

System introduction

Unit- I

Components of Systems
Programming:

SPOS

● Text Editors,
● Loader and Linker
● Assembler,
● Compiler,
● Macros,
● Debugger,
● Interpreter,
● Device Drivers,
● Operating System.

Unit- I

SPOS

Text Editor

program

Used for

is

Editing plain
text files

With the help

Text Editor
of

Write Your
Program

You can

C | Java
Prog.

Example

System Software

Unit- I
System Software

SPOS

Text Editor

Editor

Computer
Program

A user
create and revise a
document

Text Editor

Program

Primary
Elements

Edited

Character
String

is

In which

being are

is

That allows
to

Notepad

Example

Unit- I

SPOS

System Software

Loders

Program

Object Code

As input

is

That takes
Prepares

and

Execution
Them for

Initiates

it Execution

Unit- I

SPOS

Loders

System Software

Relocation

Linking
Allocation

Loading

Functions

Unit- I

SPOS

Loders

System Software

Allocation

Functions

Loader allocates space for programs in main
memory.

Unit- I

SPOS

Loders

System Software

Relocation

Functions

● Adjusting all address dependent location.

● E.g. If we have two Programs Program A and Program B.

● Program A is saved at location 100.

● And user wants to save Program B on same location.
That is physically not possible.

● So loader relocates program B to some another free
location

Unit- I

SPOS

Loders

System Software

Linking

Functions

● If we have different modules of our
program.

● Loader links object modules with each
other.

Unit- I

SPOS

Loders

System Software

Loading

Functions

Physically loading the machine instructions and
data into main memory.

Unit- I

SPOS

Assembler

Machine Lang.
Assembly Lang.

Program Assembler

Translate

Unit- I

SPOS

Macro Processor

Macro

Sequence Source Lang. Code

Referred many times

Allows

of

Defined @ once

To be

Unit- I

SPOS

Macro

Macro Processor

Syntax

Macro name [set of parameters]

// macro body

Mend
★ A macro processor takes a source with

macro definition and macro calls and
replaces each macro call with its body

● It allows the programmer to write shorthand version of a program .

● Macro allows a sequence of source language code to be defined once and then
referred to by name each time it is to be referred.

●

● Each time this name Occurs in a program, the sequence of codes is
substituted at that point.

Unit- I

SPOS

5. Macro Processor

Macro code -- Example

Source
MACRO STRG
STADATA1
STBDATA2
STX DATA3
MEND

.
STRG

.
STRG

.

.

Expanded source
.
. STADATA1
STBDATA2
STXDATA3

.
STADATA1
STBDATA2
STXDATA3

.

{
{

Unit-1

Unit- I

SPOS
Compiler

Low Level Lang.High Level Lang. Compiler

Converts

Unit- I

SPOS
Compiler

Benefits of writing a program in a high level language

Increases productivity Machine Independence

It is very easy to write a program in a
high level language

A program written in a high level language is
machine independent.

Unit- I

SPOS
Debugger

Debugging tool helps programmer for testing and debugging programs

It provides some facilities:

•Setting breakpoints.

•Displaying values of variables.

7. Interpreter

● A Interpreter reads the source code one instruction or line at a this
line into machine code or some intermediate form and executes it.

Machine
language
statement

InterpreterProgram
statement

Statement
execution

Fig.: Interpreter

Unit-1

8. Operating system (OS)

● An operating system (OS) is system software that
manages computer hardware, software resources, and
provides common services for computer programs.

9. Device driver (OS)
● Device driver is a computer program that

operates or controls a particular type of device
that is attached to a computer .

Assembly Language

Unit- I

SPOS
Assembly Language

● Assembly language is middle level language.

● An assembly language is machine dependent.

● It differs from computer to computer.

● Writing programs in assembly language is very easy as compared to
machine(binary) language

● Assembly lang. a symbolic representation of machine language.
● uses a mnemonic to represent each low-level machine instruction or

operation.
● Assemblers with different syntax for a particular CPU or instruction

set architecture.
● Example:- An instruction to add memory data to
 a register
 x86-family processor: add eax,[ebx],
 whereas this would be written addl (%ebx),%eax
 in the AT&T syntax used by the GNU Assembler.

http://en.wikipedia.org/wiki/Syntax_(programming_languages)
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Instruction_set_architecture
http://en.wikipedia.org/wiki/Instruction_set_architecture
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/AT&T_syntax
http://en.wikipedia.org/wiki/GNU_Assembler

Unit- I

SPOS
Assembly Language

Assembly language programming Terms

Location Counter points to the next instruction

(LC)

Literals Constant Values

Unit- I

SPOS
Assembly Language

Assembly language programming Terms

Symbols Name of variables and labels

Procedures Methods | Function

Elements of assembly language programs:
A. Basic features
B. Statement format
C. Operation code

Unit-1

A.Basic features

Sytem Programming

• Assembly lang. Provides 3 basic features:
1. Mnemonic Operation Codes(Opcodes)
 Ex: MOVER or MOVEM

2. Symbolic Operand:
Ex: DS – Declare as storage
 DC – Declare as Constant

3. Data Declaration:
Ex: X DC ‘-10.5’

Unit-1

B.Statement Format
Statement Format:

[Label] <opcode> <operand1> [<operand2>..]

Label-Optional
Opcode- it contain symbolic operation code
Operand- Operand can also be a CPU register: AREG,

BREG,CREG.
Example-
LOOP : MOVER AREG, ‘=5’

Unit-1

Machine supports 11 Different Operations
Symbolic opcode Remark

STOP Stop Excecution
ADD Operand 🡺 Oper1+Oper2
SUB Operand 🡺 Oper1- Oper2

MULT Operand 🡺Oper1*Oper2
MOVER CPU Register🡺Memory move
MOVEM Memory operand🡺CPU register
COMP Set condition code

Comparison instruction sets a condition code
The condition code can be tested by BC

BC Branch on condition
Format for BC : BC <condition code spec.>, <Memory address>
1. LT-Less than
2. LE-Less or equal
3. EQ-Equal
4. GT-Greater than
5. GE-Greater or equal
6. ANY-Implies unconditional transfer of control

Unit-1

Symbolic
opcode

Remark

DIV Operand 🡺Oper1/Oper2

READ Operand2🡺 input value

PRINT Output🡺operand2

First operand is always a CPU register
Second operand is always a memory operand

Machine supports 11 Different Operations
Unit-1

Unit- I

SPOS
Assembly Language

Assembly language Statements:

Imperative
Statements

Declarative/Declaration
Statements

Assembler Directive

Unit- I

SPOS
Assembly Language

Imperative
Statements

❏ Imperative means mnemonics

❏ These are executable statements.

❏ Each imperative statement indicates an
action to be taken during execution of the
program

Unit- I

SPOS
Assembly Language

Declarative/Declaration
Statements

❏ Declaration statements are for
reserving memory for variables.

❏ We can specify the initial value of
a variable.

Types

DS DC

Declare Storage Declare Constant

Unit- I

SPOS
Assembly Language

Declare Storage

Syntax

[Label] DS < Constraint Specifying size >

X DS 1
Example

Unit- I

SPOS
Assembly Language

Declare Constant

Syntax

[Label] DC < Constraint Specifying values >

X DC ‘ 5 ’

Example

3.Assembler Directive
Instructs the assembler to perform certain actions
during assembly of a program.

A directive is a direction for the assembler
A directive is also known as pseudo instruction
 machine code is not generated for AD.

Unit-1

3.Assembler Directive…
START <Constant>
It indicates that the first word of the m/c code
should be placed in the memory word with the
address <CONSTANT>

Unit-1

END [<OPERAND SPECIFICATION>]

Optional, indicates address of the instruction where
the address of program should begin.
By default, execution begins from the first instruction.
It indicates the end of the source program.
Class:AD

Unit-1

3.Assembler Directive…

Advanced Assembler Directives
These directive include:

1. ORIGIN
2. EQU
3. LTORG

ORIGIN
Useful when m/c code is not stored in consecutive memory
location.
ORIGIN <address specification>

 Operand or constant or expression containing an operand
 and a constant.

Sets LC to the address given by <address specification>
LC processing in a relative rather than absolute manner

Sr.N
o

Assembly Program LC Remark

1 START 100 ORGIN LOOP+5,
Set LC to the value 106
(101+5=106)
Here, LOOP associated with address 101

2 MOVER BREG,’=2’ 100
3 LOOP MOVER AREG,N 101
4 ADD BREG,’=1’ 102
5 ORGIN LOOP+5
6 NEXT BC ANY,LOOP 106

ORGIN NEXT+2
Sets LC to the value 108
(106+2=108)
Here, NEXT associated with address 106

7 ORGIN NEXT+2
8 LAST STOP 108
9 N DC ‘5’ 109
10 END

ORGIN…..Example

EQU
Syntax:
<symbol> EQU <address specification>
Where,
<address specification> :can be operand specification or a

constant
<symbol>: EQU Associates symbol with the <address

specification>
 Ex. BACK EQU LOOP
The symbol BACK is set to the address of LOOP

LTORG
Permits a programmer to specify where literal (for information
about literal then click on)should be placed.
If the LTORG statement not present, literal are present at the
END statement
At every LTORG Statement, memory is allocated to the literal
of the current pool of literals.
The pool contains all literal used in the program since the start
of the program or since the last LTORG statement.

Sytem Programming

#
#
#
#
#
#

Literal and Constant
● A literal is an immediate operand
● A literal is an operand with constant value.
 In the c-statement
 int z=5;
 x=y+5;
The constant value is ‘5’ known as literal.
● Literal can not be change during program execution
● They are specified using immediate addressing.

Unit-1

Literal and Constant…
● Literal in assembly language:
● Assembly instruction for 8086 with immediate operand

● MOV AX 15 (8086 instruction)

● But Hypothetical machine does not support immediate operand.

Unit-1

Literal and Constant…
● Handling a literal by our machine is as follows:

ADD AREG,=‘6’
ADD AREG, X

X DC ‘6’

Fig.: Handling of literal

Unit-1

Unit- I

SPOS
Assembly Language

Sample Assembly language Code

1. START 100
2. MOVER A REG, X
3. MOVER B REG, Y
4. ADD A REG, Y
5. MOVEM A REG, X
6. X DC ‘10’
7. Y DS 1
8. END

Unit- I

SPOS
Assembly Language

Identify types of statement 1. START 100

IS DS ADSr. No

1.

2.

3.

4.

 2. MOVER B REG, Y

 3. MOVER B REG, Y

 4. ADD A REG, Y

Code

Unit- I

SPOS
Assembly Language

Identify types of statement 5. MOVEM A REG, X

IS DS ADSr. No

5.

6.

7.

8.

 6. X DC ‘10’

 7. Y DS 1

 8. End

Code

Types of Assembler

● 3 Types of Assemblers
1. Load and Go-Assembler
2. One-pass Assembler
3. Two-pass Assembler

Unit-1

1.Load and Go-Assembler
Simplest form of assembler
It produces machine language as output which
are loaded directly in main memory and executed
The ability to design code and test the different
program components in parallel

Unit-1

2.One Pass Assembler
Normally , it does not allow forward referencing.
An assembler cannot generate m/c code for an
assembly instruction with FR.
Machine code is generated ,after the address of
variable used in the instruction is known.
Symbol table is used to record the address of the
variables.

Unit-1

Unit- I

SPOS Assembler

Dr. Mahesh R. Sanghavi

Unit- I

SPOS Assembler

Dr. Mahesh R. Sanghavi

Pass 1 Pass 2

Intermediate Code Machine Code

Output of Pass 1 | Pass 2 Assembler

Generates Generates

Unit- I

SPOSAssembler

Two Pass
Assembler

Pass 1
Assembler Pass 2

Assembler

Separate Generate the
machine code

Determine Storage
Requirement

Build the Symbol
Table

Labels

Operand Fields

Mnemonic Opcode

Working of pass I
Data structures required:
MOT-use to search the opcode
Symbol table-use to search the symbol
Literal table
Pool table : starting literal number of each pool.

Mnemonic Opcode Table(MOT)
 Mnemonic opcode m/c code for opcode Class Size of instructions

STOP 00 IS 1
ADD 01 IS 1
SUB 02 IS 1

MULT 03 IS 1
MOVER 04 IS 1
MOVEM 05 IS 1
COMP 06 IS 1

BC 07 IS 1
DIV 08 IS 1

READ 09 IS 1
PRINT 10 IS 1

Unit-1

Mnemonic Opcode Table(MOT)…
 Mnemonic opcode m/c code for opcode Class Size of instructions

START 01 AD -----
END 02 AD -------

ORIGIN 03 AD -----
EQU 04 AD -------

LTROG 05 AD -----
DS 01 DL -------
DC 02 DL 1

AREG 01 RG -----
BREG 02 RG -------
CREG 03 RG -----

Unit-1

Unit- I

SPOS

Enhanced Machine Opcode Table

Pass 1 Assembler

Symbol Table
It contains:

1. Name of variable or a label or symbol
2. Its address
3. Its size in number of words
4. Example-

Sytem Programming

SYMBOL TABLE
Symbol address

X 214

L1 202

NXT 207

BACK 202

0
1

2

3

 Index

Literal Table
It contains:

1. Value of the literal
2. Address of the memory location associated with
 the literal.
Example-

Sytem Programming

LITERAL TABLE
Literal address

5 205

2 206

1 210

2 211

4 215

0
1

2

3

4

Index

POOL Table
This table contains the literal number of the starting
literal of each literal pool.

Sytem Programming

POOL TABLE

0

2

4

0

1

2

Index

Intermediate Code
Is equivalent representation of source program.
Pass-I of the assembler involve scanning of the source file.
Every opcode is searched in MOT

Every operand is searched in symbol table.

It helps in avoiding:
 1. Scanning of source file in PASS-II
 2. Searching MOT and ST in PASS-II

Sytem Programming

Format of Intermediate Code
Each Mnemonic opcode field is represented as:
(Statement class , Machine code)

 IS MOT entry of opcode
 AD
 DL

Ex.: MOVER 🡺 (IS,04)
LTORG 🡺 (AD, 05)

 START🡺(AD,01)
DC 🡺 (DL,02)

Operand
(Operand Class, reference)

C: constant for a symbol or
S: symbol literal , reference
L: literal(variable) field contains the
RG: register index of the operand’s
CC:condition code entry in the symbol

 table or literal table

Steps for Two Pass Assembler
Two Pass assembler: Pass1 and Pass2
Steps for Pass1:
1.Read source program
2.Add Location Count
3.Prepared Symbol table,Literal Table,Pool Table
4.Prepared Intermediate code using MOT table,Symbol table
and Literal Table
Steps for Pass2:
1.It generate Machine code from Intermediate code

Unit- I

SPOS

Apply LC

Observe code

Pass 1 Assembler

Example 1

Unit- I

SPOS

Symbol Table
Construct

Pass 1 Assembler

Unit- I

SPOS

Construct
Literal Table

Pass 1 Assembler

Unit- I

SPOS

Pool table contains starting
literal(index) of each pool.

Pool Table

Pass 1 Assembler

Unit- I

SPOS

Intermediate code

Unit- I

SPOS

Example 2

Assignment

Dr. Mahesh R. Sanghavi

Unit- I

SPOSPass 2 Assembler

Pass 2 Assembler

Intermediate code Machine Code

Pass 2 Assembler

❏ Processes the intermediate representation (IR) to
synthesize the target program.

Dr. Mahesh R. Sanghavi

Unit- I

SPOS

Intermediate code

Dr. Mahesh R. Sanghavi

Unit- I

SPOS

Example 2

Assignment

START 200
MOVER AREG, ‘=5’…………. 200
MOVEM AREG, X ………… 201

L1 MOVER BREG, ‘=2’…………. 202
ORIGIN L1+3
 LTORG ………… 205,206 for literal

NEXT ADD AREG, ‘= 1’ ………… 207
SUB BREG,’=2’ ………… 208
BC LT, BACK …………. 209
LTORG 210, 211…. for literal

BACK EQU L1 ………… 202
 ORIGIN NEXT+5

MULT AREG,’=4’ …………212
 STOP……………………………213

X DS ‘5’………………………. 214
END ………..219 for literal (214+5=219)

202+3=205

207+5=212

SYMBOL TABLE
Symbol address

X 214

L1 202

NEXT 207

BACK 202

LITERAL TABLE
Literal address

5 205

2 206

1 210

2 211

4 219

POOL TABLE

0

2

4

0
1

2

3

4

0
1

2

3

0

1

2

Index

Index
 Index

START 200 ………..(AD,01) (C,200)
MOVER AREG, ‘=5’….. 200 ….(IS,04) (RG,01) (L,0)
MOVEM AREG, X…… 201….(IS,05) (RG,01) (S,0)

 L1 MOVER BREG, ‘=2’….. 202 ….(IS,04) (RG,02) (L,1)
ORIGIN L1+3 (AD,03) (C,205)
 LTORG 205……(DL,02) (C,5)

206 ……(DL,02) (C,2)
NEXT ADD AREG, ‘= 1’……. 207 ….(IS,01) (RG,01) (L,2)

SUB BREG,’=2’ ……… 208 ….(IS,02) (RG,02) (L,3)
BC LT, BACK…………. 209 ….(IS,07) (CC,02) (S,3)
LTORG ……….. 210, ……(DL,02) (C,1)

211 ……(DL,02) (C,2)
BACK EQU L1 ……….. 202 ………..(AD,01) (C,202)
ORIGIN NEXT+5 ………..(AD,01) (C,212)
MULT AREG,’=4’…….. 212 ….(IS,03) (RG,03) (L,4)

 STOP…………………… 213 ….(IS,00)
X DS ‘5’……………. 214 ……(DL,01) (C,1)

END -------(AD,02)
219 ………(DL,02) (C,4)

Assembly Program LC Intermediate Code

START 200 machine code
MOVER AREG, ‘=5’….. 200 … 04 01 205
MOVEM AREG, X……201…. 05 01 214

 L1 MOVER BREG, ‘=2’….. 202 ….04 02 206
ORIGIN L1+3
 LTORG 205……00 00 05

206 ……00 00 02
 NEXT ADD AREG, ‘= 1’……. 207 ….01 01 210

SUB BREG,’=2’ ……… 208 ….(IS,02) (RG,02) (L,3)
BC LT, BACK…………. 209 ….(IS,07) (CC,02) (S,3)
LTORG ……….. 210, ……(DL,02) (C,1)

211 ……(DL,02) (C,2)
BACK EQU L1 ……….. 202 ………..(AD,01) (C,202)
ORIGIN NEXT+5 ………..(AD,01) (C,212)
MULT AREG,’=4’…….. 212 ….(IS,03) (RG,03) (L,4)

 STOP…………………… 213 ….(IS,00)
X DS ‘5’……………. 214 ……(DL,01) (C,1)

END -------(AD,02)
219………(DL,02) (C,4)

Assembly Program LC Intermediate Code

Solved Example of Assembler

View

https://docs.google.com/document/d/142SNoDSpgcHEelMDx4Op2vhrGOVLqn3Q/edit?usp=sharing&ouid=114546027882146102939&rtpof=true&sd=true

