
Assignment No-01

MES Wadia College of Engineering Pune-01

Department of Computer Engineering

Name of Student: Class:

Semester/Year: Roll No:

Date of Performance: Date of Submission:

Examined By: Experiment No: Group A-01

Group A: ASSIGNMENT NO: 01

AIM: Design suitable Data structures and implement Pass-I and Pass-II of a two-pass

assembler for pseudo-machine. Implementation should consist of a few instructions from

each category and few assembler directives. The output of Pass-I (intermediate code file

and symbol table) should be input for Pass-II.

OBJECTIVES:

• To implement basic language translator by using various needed data structures.

• To implement basic Assembler Pass I and Pass II

PRE-REQUISITES:

1. Eclipse java.

2. Basics of Language processors.

APPARATUS:

THEORY:

Design of two pass assembler:

Department of Computer Engineering Page 1

Assignment No-01

Algorithm (Assembler First Pass) :

1. loc_cntr :=0;(default value)

pooltab_ptr :=1; POOLTAB[1] := 1;

littab_ptr := 1;

2. While next statement is not an END statement

 (a) If label is present then

 this_label := symbol in label field;

 Enter (this_label, loc_cntr) in SYMTAB.

 (b) If an LTORG statement then

 (1) Process literals LITTAB [POOLTAB [pooltab_ptr]]. . .LITTAB[littab_ptr -1]

 to allocate memory ant put the address in the address field. Update loc_cntr

accordingly.

 (2) pooltab_ptr := pooltab_ptr + 1;

 (3) POOLTAB [pooltab_ptr] := littab_ptr;

 (c) If a START or ORIGIN statement then

 loc_cntr := value specified in operand field ;

 (d) If an EQU statement then

 (1) this_addr := value of < address spec>;

 (2) Correct the symtab entry for this_label to (this_label , this_addr).

 (e) If a declaration statement then

 (1) code := code of the declaration statement;

 (2) size := size of memory area required by DC/DS.

 (3) loc_cntr := loc_cntr + size;

 (4) Generate IC '(DL,code). . .' .

 (f) If an imperative statement then

 (1) code := machine opcode from OPTAB;

 (2) loc_cntr := loc_cntr + instruction length from OPTAB;

 (3) If operand is a literal then

 this_literal := literal in operand field;

 LITTAB[littab_ptr] := this_literal;

 littab_ptr := littab_ptr + 1;

 else (i.e. operand is a symbol)

 this_entry := SYMTAB entry number of operand;

 Generate IC '(IS, code)(S, this_entry)';

3. (Processing of END statement)

 (a) Perform step 2(b).

 (b) Generate IC '(AD, 02)'.

 (c) Go to Pass II.

Department of Computer Engineering Page 2

Assignment No-01

e.g.

Pass I Use following Data Structures

• OPTAB

• SYMTAB

Department of Computer Engineering Page 3

Assignment No-01

• LITTAB

• POOLTAB

Algorithm for pass II assumes that the intermediate code is stored in the file. Target code will be

assembled in the area named code area.

Algorithm (Assembler Second Pass):

1. code_area_address:= address of code_area;

 pooltab_ptr :=1;

 loc_cntr :=0;

2.While next statement is not an END statement

 (a) Clear machine_code_buffer ;

 (b) If an LTORG statement

 (i) Process literals in LITTAB[POOLTAB[poottab_ptr]]... LTAB

 [POOLTAB[pooltab_ptr+1]]-1 similar to processing of constants in a DC statement ,

i.e.

 assemble the literals in machine_code_buffer;

 (ii) size:= size of memory area required for literals;

 (iii) pooltab_ptr := pooltab_ptr+1;

Department of Computer Engineering Page 4

Assignment No-01

 (c) If START or ORIGIN statement then

 (i) loc_ctr := value specified in operand feild;

 (ii)size:=0;

 (d) If a DECLARATION STATEMENT

 (i) IF a DC statement then

Assemble the constant in machine_code_buffer.

 (ii)size:= size of memory area required by DC/DS;

 (e) if an IMPERATIVE STSATEMENT

 (i) Get operand address from SYMTAB or LITTAB.

 (ii) Assemble Instruction in macheine_code_buffer.

 (iii) size:=size of instruction.

 (f) IF size != 0 then

 (i) Move content of machine_code_buffer to the address code_area_address +loc_cntr;

 (ii) loc_cntr:= loc_cntr+size;

3. (Processing of END statement)

 (a) Perform step 2(b) and 2(f).

 (b) Write code_area into output file.

CONCLUSION:

QUESTIONS:

1) What is forward reference? How it is handled in 2 pass assembler?

2) What is ORIGIN statement?

3) Explain EQU statement with example.

4) Explain variants of intermediate code?

5) Which data structures are used in pass I?

6) Which data structures are used in Pass II?

7) Give Example of LTORG statement.

Department of Computer Engineering Page 5

