(Part 1)

L4.1 Equivalence of CFG and PDA

Equivalence of CFG and PDA (Part-1)

Theorem: A language is Context Free iff some Pushdown Automata recognizes it.

Proof: Part 1: Given a CFG, show how to construct a PDA that recognizes it.

Part 2: Given a PDA, show how to construct a CFG that recognizes the same language.

Theorem: A language is Context Free iff some Pushdown Automata recognizes it.

Proof: Part 1: Given a CFG, show how to construct a PDA that recognizes it.

Part 2: Given a PDA, show how to construct a CFG that recognizes the same language.

Given a grammar $S \rightarrow BS|A$

 $A \rightarrow 0A \in$

B→BB1|2 Find or build a PDA

Theorem: A language is Context Free iff some Pushdown Automata recognizes it.

Proof: Part 1: Given a CFG, show how to construct a PDA that recognizes it.

Part 2: Given a PDA, show how to construct a CFG that recognizes the same language.

--> S (Left Given a grammar S→ BS A --> BS most $A \rightarrow 0A \in$ --> BB1S derivation) B→BB1|2 Find or build a PDA --> 2B1S --> 221S --> 221A --> 221∈ --> 221

Theorem: A language is Context Free iff some Pushdown Automata recognizes it.

Proof: Part 1: Given a CFG, show how to construct a PDA that recognizes it.

Part 2: Given a PDA, show how to construct a CFG that recognizes the same language.

Theorem: A language is Context Free iff some Pushdown Automata recognizes it.

Proof: Part 1: Given a CFG, show how to construct a PDA that recognizes it.

Part 2: Given a PDA, show how to construct a CFG that recognizes the same language.

Left Most Derivation: S --> a a a a B a B C -->

AT EACH STEP EXPAND LEFT-MOST DERIVATION

Eg. Rule: B→ASAxBA --> aaaa ASA x B A a B C

- → Match Stack Top to a Rule
- → Pop Stack
- → Push Right Hand Side of Rule onto Stack

Left Most Derivation: S --> a a a a B a B C -->

AT EACH STEP EXPAND LEFT-MOST DERIVATION

Eg. Rule: B→ASAxBA --> aaaa ASA×BAaBC

- → Match Stack Top to a Rule
- → Pop Stack
- → Push Right Hand Side of Rule onto Stack

Rule: $A \rightarrow BCD$ Add this to the PDA $E, A \rightarrow BCD$ Right hand side pushed onto stack and Pop

Input not advanced

Rule: $A \rightarrow BCD$ Add this to the PDA

Rule: $A \rightarrow BCD$ Add this to the PDA

Rule: $A \rightarrow 0102B3C$

MATCH TERMINAL SYMBOLS TO THE STACK TOP

The Final PDA \in , $\in \to \mathbb{Z}_0$ ∈, ∈→**S** a, a→∈ x, x→∈ for x∈Σ ∈, A→BCD for all Rules , Z_o→∈

The Final PDA

