SPPU-TE-COMP-CONTENT - KSKA Git

Total No. of Questions: 8]

SEAT No.
[Total No. of Pages : 3

PC-1719

[6353]-36

T.E. (Computer Engg.)

THEORY OF COMPUTATION

(2019 Pattern) (Semester - I) (310242)

Time: 21/2 Hours

[Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Give Context Free Grammars for the following languages
- 9
- i) $L=\{w \in \{a,b\}^* | w \text{ is string of staring with 'a' and ending with 'b'}\}$
- ii) RE = 0(0+1)*01(0+1)*1
- iii) RE = (011+1)*(01)*
- b) Simplify the following grammar as

[8]

i) Eliminate Useless production

ii) Eliminate Unit Production

$$S \rightarrow Aa \mid B$$

$$A \rightarrow b \mid B$$

iii) Eliminate the ∈ Production

$$S \rightarrow XYX$$

$$X \rightarrow 0X \mid \epsilon$$

$$Y \rightarrow 1Y \mid \epsilon$$

OR

P.T.O.

SPPU-TE-COMP-CONTENT – KSKA Git

Q2) a	1)	$S \rightarrow aB \mid bA$
		$A \rightarrow a \mid aS \mid bAA$
		$B \rightarrow b \mid bS \mid aBB$
		Derive using Leftmost Derivation and Rightmost Derivation: i) bbaaba ii) aaabbb. Draw parse tree for the same. [9]
t)	Find context Free Grammar generating each of these languages. [8]
		i) $L1 = \{a^ib^ic^k \text{ such that } i = j + k \text{ where } I, j, k>=1\}$
		ii) L2 $=$ { $a^ib^jc^k$ such that $j = i + k$ where $I, j, k >= 1$ }
Q3) a	1)	i) Construct PDA for the given CFG, and test whether 010 ⁴ is acceptable by this PDA.
		S→ 0BB
		$B \rightarrow 0S \mid 1S \mid 0$
		Construct PDA for the given CFG, and test whether 'aaabb' is acceptable by this PDA. $S \to aSb$ $S \to a \mid b \mid \epsilon$
		$S \rightarrow aSb$
		$S \rightarrow a \mid b \mid \epsilon$
		[10]
ł	0)	What is NPDA? Construct a NPDA for the set of all strings over {a, b} with odd length palindrome. [8]
		OR Jill
Q4) a	a)	Construct a PDA accepting the language $L = \{a^nb^ma^n n,m>=0\}$ by null store. [6]
ł	b)	Design a PDA for a language $L=\{XcX^r \mid X \in \{a,b\}^* \text{ and string } X^r \text{ is the reverse of string } X\}$ [6]
(c)	Obtain a PDA to accept the language - [6]
		$L = \{w \mid w \in \Sigma^*, \Sigma = \{a, b\} \text{ and } n_a(w) = n_a(w)\}$ by final state
Q5) a	a)	Design the Turing for the function $f(n) = 2n$ is computable. [9]
I	b)	What are the different ways for extension of TM? Explain. Design TM for language $L=\{a^mb^n\mid m\leq n\}$ [9]

SPPU-TE-COMP-CONTENT - KSKA Git

OR

- Q6) a) Construct a TM to accept the language over {0,1} containing the substring 001. [6]
 - Design a TM to multiply a unary number by 2. b) [8]
 - Design Turing Machine for I's Complement. [4] c)
- What Traveling salesman problem? How to prove that Traveling salesman Q7) a) problem is NP Complete? [5]
 - What is post correspondence problem? Why is post correspondence 6) problem undecidable? Explain PCP with following instance of the set of the strings A and B

ď	SÃ	В
1.60	1	111
22.	10111	10
3.	10	0

What is reducibility in Computability Theory? Explain in detail, the (08) a) polynomial time reduction approach for proving that a problem is NP-Complete.

- State and explain with suitable example:
 - Decidable Problem i)
 - Undecidable Problem ii)
 - Church-Turing Thesis. iii)