L1 Context Free Grammar & Context Free Language

Context Free Language

In formal language theory, a Context Free Language is a language generated by some Context Free Grammar.

The set of all CFL is identical to the set of languages accepted by Pushdown Automata.

Context Free Language

In formal language theory, a Context Free Language is a language generated by some Context Free Grammar.

The set of all CFL is identical to the set of languages accepted by Pushdown Automata.

Context Free Grammar is defined by 4 tuples as $G = \{V, \Sigma, S, P\}$ where

V = Set of Variables or Non-Terminal Symbols

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$

where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

Context Free Language

In formal language theory, a Context Free Language is a language generated by some Context Free Grammar.

The set of all CFL is identical to the set of languages accepted by Pushdown Automata.

Context Free Grammar is defined by 4 tuples as $G = \{V, \Sigma, S, P\}$ where

V = Set of Variables or Non-Terminal Symbols

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form

A → a

where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$ where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

Example: For generating a language that generates equal number of a's and b's in the form aⁿbⁿ, the Context Free Grammar wil be defined as

$$G = \{ (S,A), (a,b), (S \rightarrow aAb, A \rightarrow aAb | \in) \}$$

(1, 2, 0, 1)

V = Set of Variables or Non-Terminal Symbols

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$ where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

Example: For generating a language that generates equal number of a's and b's in the form a^nb^n , the Context Free Grammar wil be defined as $G = \{ (S,A), (a,b), (S \rightarrow aAb, A \rightarrow aAb | \in) \}$

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$ where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

Example: For generating a language that generates equal number of a's and b's in the form $a^n b^n$, the Context Free Grammar wil be defined as $G = \{ (S,A), (a,b), (S \rightarrow aAb, A \rightarrow aAb | \in) \}$

$$5 \rightarrow a \underline{A}b$$

 $\rightarrow a \underline{a}\underline{A}bb (by \underline{A} \rightarrow a \underline{A}b)$
 $\rightarrow a \underline{a}\underline{a}\underline{A}bbb (U)$

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$ where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

<u>Example:</u> For generating a language that generates equal number of a's and b's in the form aⁿbⁿ, the Context Free Grammar wil be defined as

$$G = \{ (S,A), (a,b), (S \rightarrow aAb, A \rightarrow aAb | \in) \}$$

or the state of th

V = Set of Variables or Non-Terminal Symbols

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$ where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

Example: For generating a language that generates equal number of a's and b's in the form $a^n b^n$, the Context Free Grammar will be defined as $G = \{ (S,A), (a,b), (S \rightarrow aAb, A \rightarrow aAb | \in \} \}$

 Σ = Set of Terminal Symbols

S = Start Symbol

P = Production Rule

Context Free Grammar has Production Rule of the form $A \rightarrow a$ where, $a = \{V \cup \Sigma\}^*$ and $A \in V$

Example: For generating a language that generates equal number of a's and b's in the form $a^n b^n$, the Context Free Grammar will be defined as $G = \{ (S,A), (a,b), (S \rightarrow aAb, A \rightarrow aAb | \in \} \}$

$$5 \rightarrow a \underline{A}b$$

 $\rightarrow a \underline{a}\underline{A}bb (by \underline{A} \rightarrow a \underline{A}b)$
 $\rightarrow a \underline{a}\underline{A}bbb (U)$
 $\rightarrow a \underline{a}\underline{a}\underline{A}bbb (by \underline{A} \rightarrow e)$
 $\rightarrow a \underline{a}\underline{a}\underline{b}bb (by \underline{A} \rightarrow e)$
 $\rightarrow a \underline{a}\underline{b}bb (a \underline{b}\underline{b}b)$

Questions????