L2.2 – Simplification of CFG (Removal of Unit Productions)

Removal of Unit Productions

Any Production Rule of the form $A \rightarrow B$ where $A, B \in Non$ Terminals is called Unit Production

Procedure for Removal

- Step 1: To remove $A \rightarrow B$, add production $A \rightarrow x$ to the grammar rule whenever $B \rightarrow x$ occurs in the grammar. [$x \in Terminal$, $x \in Serminal$]
- Step 2: Delete $A \rightarrow B$ from the grammar.
- Step 3: Repeat from Step 1 until all Unit Productions are removed.

Removal of Unit Productions

Any Production Rule of the form $A \rightarrow B$ where $A, B \in Non$ Terminals is called Unit Production

Procedure for Removal

- Step 1: To remove $A \rightarrow B$, add production $A \rightarrow x$ to the grammar rule whenever $B \rightarrow x$ occurs in the grammar. [$x \in Terminal$, $x \in Serminal$]
- Step 2: Delete $A \rightarrow B$ from the grammar.
- Step 3: Repeat from Step 1 until all Unit Productions are removed.

0

Simplification of Context Free Grammar

Removal of Unit Productions

y Production Rule of the form $A \rightarrow B$ where $A, B \in N$ on Terminals is called Unit Production occurrence for Removal ocedure for Removal

 \blacktriangleright ep 1: To remove $A \rightarrow B$, add production $A \rightarrow x$ to the grammar rule whenever $B \rightarrow x$ occurs in the grammar. [$x \in Terminal$, $x \in Terminal$]

ep 2: Delete $A \rightarrow B$ from the grammar.

Repeat from Step 1 until all Unit Productions are removed.

Removal of Unit Productions

Any Production Rule of the form $A \rightarrow B$ where $A, B \in Non$ Terminals is called Unit Production Procedure for Removal

- Step 1: To remove $A \rightarrow B$, add production $A \rightarrow x$ to the grammar rule whenever $B \rightarrow x$ occurs in the grammar. [$x \in Terminal$, $x \in Terminal$]
- Step 2: Delete $A \rightarrow B$ from the grammar.
- Step 3: Repeat from Step 1 until all Unit Productions are removed.

Removal of Unit Productions

Any Production Rule of the form $A \rightarrow B$ where A, $B \in Non$ Terminals is called Unit Production Procedure for Removal

- Step 1: To remove $A \rightarrow B$, add production $A \rightarrow x$ to the grammar rule whenever $B \rightarrow x$ occurs in the grammar. [$x \in Terminal$, $x \in Terminal$]
- Step 2: Delete $A \rightarrow B$ from the grammar.
- Step 3: Repeat from Step 1 until all Unit Productions are removed.
- Example: Remove Unit Productions from the Grammar whose production rule is given by P: $S \rightarrow XY$, $X \rightarrow a$, $Y \rightarrow Z|b$, $Z \rightarrow M$, $M \rightarrow N$, $N \rightarrow a$

1) Since N>a, we add M>a
P: 5> XY, X>a, Y>Zb, Z>M, M>a, N>a

Step 2: Delete $A \rightarrow B$ from the grammar.

Step 3: Repeat from Step 1 until all Unit Productions are removed.

-) Since N>a, we add M>a
 P: 5> XY, X>a, Y>Zb, Z>M, M>a, N>a
- 2) Since M > a, we add Z > a

Step 2: Delete $A \rightarrow B$ from the grammar.

Step 3: Repeat from Step 1 until all Unit Productions are removed.

-) Since N>a, we add M>a
 P: 5> XY, X>a, Y>Zb, Z>M, M>a, N>a
- 2) Since M>a, we add Z>a
 p: 5> XX, x>a, y>z|, Z>a, M>a, N>a

Step 2: Delete $A \rightarrow B$ from the grammar.

Step 3: Repeat from Step 1 until all Unit Productions are removed.

- 1) Since N>a, we add M>a
 P: 5> XY, X>a, Y>Zb, Z>M, M>a, N>a
- Since $M \Rightarrow a$, we add $Z \Rightarrow a$ P: $S \Rightarrow XY$, $X \Rightarrow a$, $Y \Rightarrow Z \mid b$, $Z \Rightarrow a$, $M \Rightarrow a$, $N \Rightarrow a$
 - 3) Since Z>a, we add y>a

Y>Z, Z>M, M>N

- 1) Since N>a, we add M>a
 P: 5> XY, X>a, Y>Zb, Z>M, M>a, N>a
- 2) Since M>a, we add Z>a
 p: 5> XY, x>a, y>z|b, Z>a, M>a, N>a
 - 3) Sime $Z \Rightarrow a$, we add $Y \Rightarrow a$ P: $5 \Rightarrow XY$, $X \Rightarrow a$, $Y \Rightarrow a \mid b$, $Z \Rightarrow a$, $M \Rightarrow a$, $N \Rightarrow a$

Y>Z, Z>M, M>N

- 1) Since N>a, we add M>a
 P: 5> XX, X>a, Y>Zb, Z>M, M>a, N>a
- 2) Since $M \Rightarrow a$, we add $Z \Rightarrow a$ P: $S \Rightarrow XY$, $X \Rightarrow a$, $Y \Rightarrow Z \mid b$, $Z \Rightarrow a$, $M \Rightarrow a$, $N \Rightarrow a$
- 3) Since Z>a, we add y>a
 P: 5> ×7, ×>a, Y>a/b, Z>a, M>a, N>a
 Remove the Unxeachable symbols

YZZ, Z>M, M>N

- 1) Since N>a, we add M>a
 P: 5> XY, X>a, Y>Zb, Z>M, M>a, N>a
- 2) Since $M \Rightarrow a$, we add $Z \Rightarrow a$ $p: S \Rightarrow XY, X \Rightarrow a, Y \Rightarrow Z \mid b, Z \Rightarrow a, M \Rightarrow a, N \Rightarrow a$
- 3) Since $Z \Rightarrow a$, we add $Y \Rightarrow a$ P: $5 \Rightarrow XY$, $X \Rightarrow a$, $Y \Rightarrow a \mid b$, $Z \Rightarrow a$, $M \Rightarrow a$, $N \Rightarrow a$

Remove the Unxcachable symbols

P: 5 > XY, X >a, Y >alb

Questions????