SPPU-TE-COMP-CONTENT - KSKA C Total No. of Questions : 8]	<u>it</u>
P269 [Total No. of Pa	ages : 2
[6003]-347	·B··· -
T.E. (Computer Engineering)	
THEORY OF COMPUTATION	
(2019 Pattern) (Semester-I) (310242)	
Time : 2½ Hours] [Max. Ma	rks : 70
Instructions to the candulates:	
1) Answer Q1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.	
 2) Neat diagrams must be drawn wherever necessary. 3) Figures to the right side indicate marks 	
 4) Assume suitable data, if necessary. 	
6. Ar	
Q1) a) Give a Context Free Grammar for the following language.	[9]
i) L1= $\{a^i b^j c^k i = j + k\}$ such that $i, j, k > 0$	
ii) $L2 = \{a^i b^j c^k j = i + k\}$ such that $i, j, k \ge 0$	
b) Reduce the following grammar to Creibach Normal form.	[9]
$S \rightarrow SS, S \rightarrow 0S1 01$	
OR	
Q2) a) Show that the following grammar is ambiguous.	[6]
S-> iCtS	
S-> iCtSeS	S
S-> a	
C-> b	AND AND
b) Convert the following grammar to Chomsky Normal Form (CNF).~[6]
$G=({S}, {a,b}, P,S)$	1
$P = \{S \rightarrow aSa \mid bSb \mid a \mid b \mid aa \mid bb\}$	
Consider the following grammar.	[6]
$E \rightarrow E + E \mid E - E \mid 1d$	
Derive the string id-id*id using	
i) Disktrast derivation	
ii) Rightmost derivation	
Q3) a) Find the transition rules of PDA for accepting a language $L=\{w \Box \{a,b\}^* w \in \mathbb{C}\}$	
is of the $a^n b^n$ with $n \ge 1$ through both empty stack and final state and	
demonstrates the stack operation for the string aaabbb. [9]	
	<i>P.T.O</i> .

P.T.O.

SPPU-TE-COMP-CONTENT – KSKA Git

Design a push down automation to recognize the language generated by b) the following grammar: $S \rightarrow S + S \mid S \square S \mid 4 \mid 2$ Show the acceptance of the input string 2+2*4 by this PDA. [8] •OR What is NPDA? Construct a NPDA for the set of all strings over {a,b} **Q4)** a) with odd length palindrome. [9] Design a push down automation to recognize the language generated by **b**) the following. [8] $S \rightarrow S + S \mid S \otimes S \mid 4 \mid 2$ Show the acceptance of the input string 2+2*4 by this PDA Design a Turing Machine for the following language by considering **Q5)** a) transition table and diagram. [9] TM that erases all non blank symbols on the tape where the sequence of non blank symbols does not contain any blank symbol B in between. N TM that find 2's complement of a binary machine. 11) What is TM? Design TM to check well formedness of parenthesis. Expand **b**) the transition for (())()[9] OR. How turing machine can be use to compute the functions? Design turing **Q6)** a) machine for multiplication of two numbers. [9] Elaborate the following terms. b) Universal Turing Machine (UTM) i) Recursively Enumerable Languages ii) iii) Halting problem of Turing Machine Define and Compare Class P and Class NP Problem with suitable diagram. [9] What do you mean by polynomial time reduction? Explain with suitable example. [8] OR Explain Satisfiability Problem and SAT Problem and comment on NP **Q8)** a) Completeness of the SAT Problem. [9] What makes a problem NP-Complete? How do we prove a problem is b) NP-complete? Are all decision problems NP-complete? [8] ★ 19.2 the?