SPPU-TE-COMP-CONTENT – KSKA Git

Total No. of Questions : 8]		SEAT No.:		
P-7858		[Total No. of Pages : 3		
	[6180]-46A			
T.E. (Computer Engineering)				
THEORY OF COMPUTATION				
(2019 Pattern) (Semester - I) (310242)				
Time : 2½ H		[Max. Marks: 70		
	to the candidates:	[Wax. Warks . 70		
	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.			
	Neat aiagrams must be drawn wherever necessary.	200		
<i>3) 1</i>	Figures to the right side indicate full marks.	23		
4) A	Assume suitable data, if necessary.	Cols		
O(1) a) $O(1)$	Clock whather the string 10010 is a member	of the language generated		
	Check whether the string 10010 is a member by following grammar by using Cocke-Young			
8		of itesseminingsminin [5]		
,	$S \to AB BC$	•		
1	$A \rightarrow BA 0$			
]	$B \rightarrow CC 1$			
($C \to AB 0$			
b) (Obtain grammar to generate the following lan	guage: [8]		
I	$L = \{w : n_a(w) \mod 2 = 0 \text{ where } w \in \{a, b\}^*\}$			
	.e. Language of a and b in which number of n			
6	either zero or in multiple of 2 only.			
	OR	~ .0.		
Q2) a)		[9]		
	$S \rightarrow aB bA$	2013 91. 10. 15° [9]		
	$A \rightarrow a aS bAA$	0,00		
9	$B \rightarrow b bS aBB$	3		
I	Derive using Leftmost Derivation and Rightm	ost Derivation:		
î		26		
·	Oraw parse tree for the same.	V2		
	28.1	P.T.O.		

SPPU-TE-COMP-CONTENT - KSKA Git

Find context Free Grammar generating each of these languages. b) [8] L1= $\{a^i b^j c^k \text{ such that } i = j+k \text{ where } I, j, k > = 1\}$ i) L2= $\{a^i b^j c^k \text{ such that } j = i+k \text{ where } I, j, k > = 1\}$ ii) Construct a PDA equivalent to following CFG **Q3**) a) [10] i) ii) S⇔BD|BC $B \rightarrow 0$ $A \rightarrow 1$ Design a PDA for a language $\mathbb{Z} = \{a^n b^{2n} | n > = 1\}$ [8] b) Construct a PDA accepting the language $L=\{a^nb^ma^n \mid n,m \ge 0\}$ by null **Q4**) a) store. Design a PDA for a language $L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and string } X^r \text{ is the } A^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X^r|X\in\{a,b\}^* \text{ and } X^r \text{ or a language } L=\{XcX^r|X^r|X^r|X^r\} \text{ or a language } L=\{XcX^r|X^r|X^r\} \text{ or a language } L=\{XcX^r|X^r\} \text{ or a language } L=\{XcX^r\} \text{ or a langu$ b) reverse of string X}. Obtain a PDA to accept the language c) $\sum = \{a,b\}$ and $n_a(w) = n_b(w)$ by final state **[6]** Design a Turing machine for well formed parenthesis, **[6]** Design a TM that accepts all strings over {1,0} with even number of 0's and even number of 1's. [8] Construct TM that recognizes language over alphabet 0,1 such that string c) ends in 10. [4] OR

[6180]-46A

SPPU-TE-COMP-CONTENT - KSKA Git

Q6)	a)	Construct a TM to accept the language over {0,1} containing the subst	ring
		001.	[6]
	b)	Design a TM to multiply a unary number by 2.	[8]
	c)	Design Turing Machine for l's complement.	[4]
Q 7)	a)	What is post correspondence problem? Explain PCP with follow	ving
		instance of the set of the strings A and B.	[8]
		A	
		1. (2) 111	
		2. 10111 10	
		3. 10 0	
	b)	State and explain with suitable example	[9]
		Decidable Problem	
		ii) Undecidable Problem	
		iii) Church-Turing Thesis.	
		OR	
Q8)	a)	What is reducibility in Computability Theory? Explain in detail,	the
		polynomial - time reduction approach for proving that a problem is	NP-
		Complete.	[8]
	b)	Explain with suitable example and diagrams	[9]
		i) Halting problem of TM	
		ii) Multitape TM	5
		iii) Universal TM	
		i) Halting problem of TM ii) Multitape TM iii) Universal TM	
	<u> </u>		
C			
		polynomial - time reduction approach for proving that a problem is Complete. Explain with suitable example and diagrams i) Halting problem of TM ii) Multitape TM iii) Universal TM	
		C' 390	