SPPU-TE-COMP-CONTENT – KSKA Git

Total No. of Questions : 8]

P806

[5870]-1126

SEAT No. :

[Total No. of Pages : 2

T.E. (Computer Engineering) THEORY OF COMPUTATIONS (2019 Pattern) (Semester-I) (310242)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
- 2) Figures to the right side indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Assume suitable data, if necessary.

Q1) a) Write a grammar G for generating the language [9]

- i) L={w belongs to $\{a,b\}^* | w \text{ is an even length palindrome with } |w|>0}$
- ii) Set of odd length strings in $\{0,1\}^*$ with middle symbol '1'
- b) Simplify the following grammar [9] $S \rightarrow 0A0|1B1|BB$ $A \rightarrow C$ $B \rightarrow S|A$ $C \rightarrow S|E$

OR

- Q2) a)Reduce the following grammar to Greibach Normal form.[9] $S \rightarrow AA \mid 0$ $A \rightarrow SS \mid 1$ b)b)Construct a DFA for the following left linear grammar.[9] $S \rightarrow B1/A0/C0$ $B \rightarrow B1/1$ $A \rightarrow A1/B1/C0$ $C \rightarrow A0$

SPPU-TE-COMP-CONTENT – KSKA Git

	b)	Construct a PDA that accept the language generated by grammar	[8]
		i) $S \rightarrow 0S1 A, A \rightarrow 1A0 S \in$	
		ii) $S \rightarrow aABB aAA, A \rightarrow aBB a, B \rightarrow bAA A$	
		OR	
Q4)	a)	What is NPDA? Construct a NPDA for the set of all strings over {a	,b}
		with odd length palindrome.	[9]
	b)	Design a push down automaton to recognize the language generated	by
		the following grammar:	[8]
		$S \rightarrow S + S \mid S \square S \mid 4 \mid 2$	
		Show the acceptance of the input string $2 + 2*4$ by this PDA.	
Q5)	a)	What is a Turing Machine? Give the formal definition of TM.	[9]
		Design a TM that replaces every occurrence of abb by baa.	
	b)	What are the different ways for extension of TM? Explain.	[9]
		Design TM for language $L = \{a^i b^j i < j\}$	
		OR	
06)	a)	What is TM? Design TM to check well formedness of Parenthesis. Expa	and
~ /	/	the transition for (())()	[9]
	b)	Elaborate the following terms	[9]
	,	i) Universal Turing Machine (UTM)	
		ii) Recursively Enumerable Languages	
		iii) Halting Problem of Turing Machine	
Q 7)	a)	Justify "Halting Problem of Turing machine is undecidable".	[9]
~ ′	h)	Define the Class P and Class NP and Problem with their example	in
	\sim		

OR

[8]

- *Q8*) a) Explain Satisfiability Problem and SAT Problem and comment on NP Completeness of the SAT Problem. [9]
 - b) What do you mean by polynomial time reduction? Explain with suitable example. [8]

detail.